Wavelets and Two Dimensional Turbulence

  • J. Weiss
Conference paper
Part of the Springer Series in Nonlinear Dynamics book series (SSNONLINEAR)


The time evolution of an inviscid, incompressible fluid is governed by Euler’s equations for the velocity field, v̂
$$ {\widehat v_t} + \widehat v \cdot \nabla \widehat v = \nabla p $$
$$\begin{array}{*{20}{c}} {\widehat v = \left( {u,v} \right)\left( {\widehat x,t} \right)} \\ {\nabla \cdot \widehat v = 0} \\ {\widehat x = \left( {x,y} \right) \in D \in {R^2}} \\ {\begin{array}{*{20}{c}} {\widehat v \cdot \widehat m = 0for\widehat x \in \partial D} \\ {\begin{array}{*{20}{c}} {\widehat m \bot \partial D} \\ {\begin{array}{*{20}{c}} {t = 0}&{\widehat v = {{\widehat v}_0}\left( {\widehat x} \right)} \end{array}.} \end{array}} \end{array}} \end{array}$$


Scaling Function Vortex Method Initial Vorticity Large Scale Vortex Structure Dimensional Turbulence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Brachet, M. Meneguzzi, H. Politano and P. Sulem, The dynamics of freely decaying two-dimensional turbulence, J Fluid Mech 194 (1988), 333–349.ADSCrossRefGoogle Scholar
  2. [2]
    Y. Couder, Two-dimensional grid turbulence in a liquid film, J. Physique Lett. 45 (1984), 353–366.CrossRefGoogle Scholar
  3. [3]
    Y. Couder and C. Basdevant, Experimental and numerical study of vortex couples in two-dimensional flows, J. Fluid Mech. 173 (1986), 225–251.ADSCrossRefGoogle Scholar
  4. [4]
    I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988), 906–966.Google Scholar
  5. [5]
    B. Fornberg, J. Comp. Phys. 25 (1977)Google Scholar
  6. [6]
    Fox, J. Math. Phys. 17 (1976), 1148.ADSCrossRefGoogle Scholar
  7. [7]
    U. Frisch, M. Lesieur and P.L. Sulem, Phys. Rev. Lett. 37 (1967), 895.ADSCrossRefGoogle Scholar
  8. [8]
    T. Kato, Arch. Ratl. Mech. 25 (1967), 188.MATHGoogle Scholar
  9. [9]
    R. Kraichnan, Phys. Fluids 10 (1967), 1417.ADSCrossRefGoogle Scholar
  10. [10]
    R. Kraichnan, J. Fluid Mech. 67 (1975), 155.ADSMATHCrossRefGoogle Scholar
  11. [11]
    A. Latto, H. L. Resnikoff and E. Tenenbaum, The evaluation of connection coefficients of compactly supportes wavelets, Aware Technical Report AD910708 (July 1991) and the proceedings of the French — USA workshop on Wavelets and Turbulence, Princeton University, June 1991, Ed. Y. Ma-day, Springer-Verlag (1992).Google Scholar
  12. [12]
    D. Lilly, J. Fluid Mech. 45 (1971), 395.ADSMATHCrossRefGoogle Scholar
  13. [13]
    K. Ohkitani, Wavenumber space dynamics of enstrophy cascade in a forced two-dimensional turbulence, Phys. Fluids A3 (1991), 1598–1611.ADSGoogle Scholar
  14. [14]
    S. Orszag and M. Israeli, Ann. Rev. Fluid Mech. 6 (1974), 281.ADSCrossRefGoogle Scholar
  15. [15]
    A. Pouquet, M. Lesieur, J.C. Andre and C. Basdevant, J. Fluid Mech. 72 (1975), 305.ADSMATHCrossRefGoogle Scholar
  16. [16]
    D.I. Pullin, P.A. Jacobs, R.H.J. Grimshaw and P.G. Saffman, Instability and filamentation of finite-amplitude waves on vortex layers of finite thickness, J. Fluid Mech. 209 (1989), 359–384.MathSciNetADSMATHCrossRefGoogle Scholar
  17. [17]
    P. Saffman, Stud. Appl. Math. 50 (1971), 377.MATHGoogle Scholar
  18. [18]
    G. Strang, Wavelets and dilation equations: A brief introduction, SIAM Review 31 (1989), 614–627.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    J. Weiss, The dynamics of enstrophy transfer in two-dimensional hydrodynamics, Physica 48D (1991), 273–294.ADSGoogle Scholar
  20. [20]
    J. Weiss, Wavelets and the study of two-dimensional turbulence, Aware Technical report AD910628 and the proceedings of the French — USA workshop on Wavelets and Turbulence, Princeton University, June 1991, Ed. Y. Maday, Springer-Verlag (1992).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • J. Weiss
    • 1
  1. 1.Aware, Inc.CambridgeUSA

Personalised recommendations