On the Instability of the Static Soliton-like “Bubbles”

  • A. de Bouard
Conference paper
Part of the Springer Series in Nonlinear Dynamics book series (SSNONLINEAR)

Abstract

The following ψ 3-ψ 5 nonlinear Schrödinger equation:
$$i \frac{{\partial \varphi }}{{\partial t}} + \Delta \varphi - {\alpha _1}\varphi + {\alpha _3}|\varphi {|^2}\varphi - {\alpha _5}|\varphi {|^4}\varphi = 0 $$
(1)
possesses, in some domain of the parameters α i , some localised solutions propagating with velocity ν which can be interpreted as rarefaction bubbles in a Bose condensate (see [1]). These localised solutions satisfy the ” boundary conditions”:
$$ \varphi \left( {x,t} \right) \to {\sqrt {{\rho _0}e} ^{i\left( {\omega t + \mu \left( {\frac{x}{{|x|}}} \right)} \right)}}when|x| \to + \infty $$
(2)
where ρ 0 is a positive constant, μ depends on the velocity ν and is equal to zero in the particular case of stationary solutions, i.e when ν = 0. Such solutions of equation (1) where found explicitly in space dimension one, and numerically in higher dimension (see [1]).

Keywords

Propa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I.Barashenkov, V.Makhankov, Phys. lett. A 128 (1988) 52–56MathSciNetADSGoogle Scholar
  2. [2]
    I.Barashenkov, A.Gocheva, V. Makhankov, I. Puzynin Phys. D 34 (1989) 240–254MathSciNetGoogle Scholar
  3. [3]
    H.Berestycki, P.L.Lions, Arch.rach.mech.anal. 82 (1983) 313–345MathSciNetMATHGoogle Scholar
  4. [4]
    H.Berestycki, T.Gallouët, O. Kavian, C. R. acad. sc PARIS 297 (1983) Serie I 307–310MATHGoogle Scholar
  5. [5]
    A. de Bouard, PhD thesis (1991), Universite Paris-Sud, Otsay France. and article in preparationGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • A. de Bouard
    • 1
  1. 1.Laboratoire d’Analyse NumériqueUniversité Paris SudF-Orsay CedexFrance

Personalised recommendations