Chaotic Dynamics Due to Competition Among Degenerate Modes in a Ring-Cavity Laser

  • A. Aceves
  • D. D. Holm
  • G. Kovacic
Conference paper
Part of the Springer Series in Nonlinear Dynamics book series (SSNONLINEAR)


Competition between two degenerate spatial modes in a ring-cavity laser is shown to lead to chaotic time-evolution of their amplitudes. Analysis of this temporal chaos implies that the laser output will show randomly intermittent bursts of apparent spatial complexity due to interference between the two competing modes.


Unstable Manifold Homoclinic Orbit Homoclinic Solution Duffing Oscillator Transverse Intersection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. A. Lugiato, G. L. Oppo, J. R. Tredicce, L. M. Narducci and M. A. Pernigo, J. Opt. Soc. of America B 7, 1019 (1990)ADSCrossRefGoogle Scholar
  2. M. Brambila, F. Battipede, L. A. Lugiato, V. Penna, F. Prati, C. Tamm and C. O. Weiss, Phys. Rev. A 43, 5090 (1991).ADSCrossRefGoogle Scholar
  3. [2]
    C. Tatum and C. O. Weiss, J. Opt. Soc. of America B 7, 1034 (1990).ADSGoogle Scholar
  4. [3]
    G. Giusfredi, J.F. Valley, R. Pon, G. Khitrova and H. M. Gibbs, J. Opt. Soc. of America B 5, 1181 (1988).ADSCrossRefGoogle Scholar
  5. [4]
    D. D. Holm, G. Kovacic and B. Sundaram, Phys. Leu. A 154, 346 (1991).MathSciNetADSCrossRefGoogle Scholar
  6. [5]
    S. Wiggins, Global Bifurcations and Chaos: Analytical Methods, Springer Verlag: New York (1988).MATHCrossRefGoogle Scholar
  7. [6]
    J. Guckenheimer and P. J. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York (1983).MATHGoogle Scholar
  8. [7]
    A. Aceves, D.D. Holm and G. Kovacic, Phys. Leu. A (in press).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • A. Aceves
    • 1
  • D. D. Holm
    • 2
  • G. Kovacic
    • 3
  1. 1.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA
  2. 2.Theoretical Division and Center for Nonlinear StudiesLos Alamos National LaboratoryLos AlamosUSA
  3. 3.Mathematical Sciences DepartmentRennsalear Polytechnical InstituteTroyUSA

Personalised recommendations