The Periodic Fixed Points of Bäcklund Transformations

  • J. Weiss
Conference paper
Part of the Springer Series in Nonlinear Dynamics book series (SSNONLINEAR)


The periodic fixed points of the Bäcklund transformations are finite dimensional invariant manifolds for the flow of the system. The dynamics occur as commuting hamiltonian flows on this finite dimensional manifold. We examine the flow of the KdV periodic fixed points in the neighborhood of steady states and reductions. These are analogous to a flow in the neighborhood of a sequence of heteroclinic points.


Invariant Manifold Null Vector Toda Lattice Schwarzian Derivative Circulant Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Hille, Ordinary Differential Equations in the Complex Plane, John Wiley, New York, 1976.Google Scholar
  2. [2]
    J. Weiss, J. Math. Phys. 24 (1983), 1405.MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    J. Weiss, The Singular Manifold Method, in the Proceedings of the conference on The Painlevé Transcendents, and their physical applications, St. Adele. 1990, Ed. P. Winternitz, Springer-Verlag (1991).Google Scholar
  4. [4]
    M. Lavie, Canadian J. Math. 21 (1969), 235.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    G. Darboux, Théorie Générale des Surfaces, II, Chelsea, New York, 1972.Google Scholar
  6. [6]
    P. Deift and E. Trubowitz, Comm. Pure Appl. Math. 32 (1979), 121.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    J. Weiss, J. Math. Phys. 27 (1986), 2647.MathSciNetADSMATHCrossRefGoogle Scholar
  8. [8]
    P. Davis, Circulant Matrices, Wiley, New York, 1983.Google Scholar
  9. [9]
    J. Weiss, J. Math. Phys 28 (1987), 2025.MathSciNetADSMATHCrossRefGoogle Scholar
  10. [10]
    J. Weiss, Phys. Letts. 137A (1989), 365.ADSCrossRefGoogle Scholar
  11. [11]
    Y.F. Chang and G. Corliss, J. Inst. Math. Appl. 25 (1980), 349.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • J. Weiss
    • 1
  1. 1.Aware, Inc.CambridgeUSA

Personalised recommendations