Advertisement

A Generalized Sato’s Equation of the KP Theory and Weyl Algebra

  • Y. Kodama
Conference paper
Part of the Springer Series in Nonlinear Dynamics book series (SSNONLINEAR)

Abstract

We give a generalization of the Sato equation of the KP theory, and show that the corresponding flows form the Weyl algebra of infinite dimension. Giving several realizations of this algebra on the infinite dimensional Grassmann manifold, we discuss some connections to the string theory in 2-D gravity 1).

Keywords

Dynamical System Statistical Physic String Theory Nonlinear Process Additional Reference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Aoyama and Y. Kodama, “A Generalized Sato Equation and W_{infinity} Algebra” to appear in Phys. Lett. B (1992).Google Scholar

Additional references for this subject

  1. 2.
    E. Brezin and V. Kazakov, Phys. Lett. B236 (1990) 144MathSciNetADSGoogle Scholar
  2. M. Douglas and S. Shenker, Nucl. Phys. B335 (1990) 635MathSciNetADSCrossRefGoogle Scholar
  3. 4.
    D. J. Gross and A. Migdal, Phys. Rev. Lett. 64 (1990) 127.MathSciNetADSMATHCrossRefGoogle Scholar
  4. D. J. Gross and A. Migdal, Nucl. Phys. B349 (1990) 333.MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    M. Douglas, Phys. Lett. B238 (1990) 176.MathSciNetCrossRefGoogle Scholar
  6. 6.
    T. Banks et al, Phys. Lett. B238 (1990) 279.MathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Fukuma et al, Intern. J. Mod. Phys. A6 (1990) 1385.MathSciNetADSGoogle Scholar
  8. 8.
    R. Dijkgraaf et al, Nucl. Phys. B348 (1991) 435.MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    A. Yu. Orlov and E. I. Schulman, Lett. Math. Phys. 12 (1986) 171.MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    S. Nishigaki and T. Yoneya, Nucl. Phys. 2348 (1991) 787.MathSciNetADSCrossRefGoogle Scholar
  11. 10.
    S. Nishigaki and T. Yoneya, Phys. Lett. B268 (1991)35.MathSciNetADSGoogle Scholar
  12. 11.
    C. Pop et al, Phys. Lett. B242 (1990)401.ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Y. Kodama
    • 1
  1. 1.Department of MathematicsOhio State UniversityColumbusUSA

Personalised recommendations