Skip to main content

Localization of Cytochrome P450 in Membranes: Reconstituted Systems

  • Chapter
Cytochrome P450

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 105))

  • 574 Accesses

Abstract

Since the successful isolation of the components of the cytochrome P450 dependent monooxygenase system by Lu and Coon (1968), their reconstitution to an enzymatically active system was established by the use of phosphatidylcholines by Strobel et al. (1970). Among various acyl derivatives of glycerol-3-phosphorylcholine the dioleoyl-derivative was most effective. The most commonly used and convenient system for reconstitution in numerous studies over the years and until now for routine work consists of the appropriate purified cytochrome P450 (0.3–1µM), a 1.5 molar excess of purified NADPH-cytochrome P450 reductase (reductase) and 30 µM l-α-dilauroylglyceryl-3-phosphatidylcholine (DLPC). This system was described by Guengerich et al. (1982) for eight different rat liver cytochrome P450 forms for use with numerous substrates. Generally the enzymatic reaction is started by the addition of NADPH or an NADPH-regenerating system. This simple reconstitution system has been found to be very reproducible, so that data from different laboratories can often be easily compared if the same incubation conditions have been used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bachmanova GI, Skotselyas ED, Kanaeva IP, Kuznetsova GP, Gordeev SA, Korneva EN, Karyakin AV, Archakov AI (1986) Reconstitution of liver monooxygenase system in solution from cytochrome P-450 and NADPH-specific flavoprotein monomers. Biochem Biophys Res Commun 139: 883–888

    Article  PubMed  CAS  Google Scholar 

  • Black SD, Coon M J (1987) P-450 cytochromes: structure and function. Adv Enzymol Relat Areas Mol Biol 60: 35–87

    PubMed  CAS  Google Scholar 

  • Blanck J, Smettan G, Ristau O, Ingelman-Sundberg M, Ruckpaul K (1984) Mechanism of rate control of the NADPH-dependent reduction of cytochrome P-450 by lipids in reconstituted phospholipid vesicles. Eur J Biochem 144: 509–513

    Article  PubMed  CAS  Google Scholar 

  • Blanck J, Jànig GR, Schwarz D, Ruckpaul K (1989) Role of lipid in the electron transfer between NADPH-cytochrome P-450 reductase and cytochrome P-450 from mammalian liver cells. Xenobiotica 19: 1231–1246

    Article  PubMed  CAS  Google Scholar 

  • Bösterling B, Stier A, Hildebrandt AG, Dawson JH, Trudell JR (1979) Reconstitution of cytochrome P-450 and cytochrome P-450 reductase into phosphatidylcholine-phosphatidylethanolamine bilayers: characterization of structure and metabolic activity. Mol Pharmacol 16: 332–342

    PubMed  Google Scholar 

  • Causey KM, Eyer CS, Backes WL (1990) Dual role of phospholipid in the reconstitution of cytochrome P-450 LM2-dependent activities. Mol Pharmacol 38: 134–142

    PubMed  CAS  Google Scholar 

  • Gorsky LD, Coon MJ (1986) Effects of conditions for reconstitution with cytochrome b5 on the formation of products in cytochrome P450-catalyzed reactions. Drug Metab Dispos 14: 89–96

    PubMed  CAS  Google Scholar 

  • Guengerich FP, Holladay LA (1979) Hydrodynamic characterization of highly purified and functionally active liver microsomal cytochrome P-450. Biochemistry 18: 5442–5449

    Article  PubMed  CAS  Google Scholar 

  • Guengerich FP, Dannan GA, Wright ST, Martin MV, Kaminsky LS (1982) Purification and characterization of liver microsomal cytochromes P-450: electrophoretic, spectral, catalytic, and immunochemical properties and inducibility of eight isozymes isolated from rats treated with phénobarbital or P-naphthofiavone. Biochemistry 21: 6019–6030

    Article  PubMed  CAS  Google Scholar 

  • Ingelman-Sundberg M, Glaumann H (1977) Reconstitution of the liver microsomal hydroxylase system into liposomes. FEBS Letters 78: 72–76

    Article  PubMed  CAS  Google Scholar 

  • Ingelman-Sundberg M, Haaparanta T, Rydstrôm J (1981) Membrane charge as effector of cytochrome P450LM2 catalyzed reactions in reconstituted liposomes. Biochemistry 20: 4100–4106

    Article  PubMed  CAS  Google Scholar 

  • Kaminsky LS, Dunbar D, Guengerich FP, Lee JJ (1987) Detergents as probes of reconstituted rat liver cytochrome P-450 function. Biochemistry 26: 1276–1283

    Article  PubMed  CAS  Google Scholar 

  • Kikuta Y, Kusunose E, Matsubara, S, Funae Y, Imaoka S, Kubota I, Kusunose M (1989) Purification and characterization of hepatic microsomal prostaglandin co-hydroxylase cytochrome P-450 from pregnant rabbits. J Biochem (Tokyo) 106: 468–473

    CAS  Google Scholar 

  • Kupfer D, Jansson I, Favreau LV, Theoharides AD, Schenkman JB (1988) Regioselective hydroxylation of prostaglandins by constitutive forms of cytochrome P-450 from rat liver: formation of a novel metabolite by a female-specific P-450. Arch Biochem Biophys 261: 186–195

    Article  PubMed  CAS  Google Scholar 

  • Lu AYH, Coon MJ (1968) Role of hemoprotein P450 in fatty acid co-hydroxylation in a soluble enzyme system from liver microsomes. J Biol Chem 243: 1331–1332

    PubMed  CAS  Google Scholar 

  • Miwa GT, Lu AYH (1981) Studies on the stimulation of cytochrome P-450-dependent monooxygenase activity by dilauroylphosphatidyl choline. Arch Biochem Biophys 211: 454–458

    Article  PubMed  CAS  Google Scholar 

  • Miwa GT, Lu AYH (1984) The association of cytochrome P-450 and NADPH-cytochrome P-450 reductase in phospholipid membranes. Arch Biochem Biophys 234: 161–166

    Article  PubMed  CAS  Google Scholar 

  • Miwa GT, West SB, Huang M-T, Lu AYH (1979) Studies on the association of cytochrome P-450 and NADPH-cytochrome c reductase during catalysis in a reconstituted hydroxylating system. J Biol Chem 254: 5695–5700

    PubMed  CAS  Google Scholar 

  • Müller-Enoch D, Nagenrauft Th (1989) Effect of lipid-composition and lipid exchange on the cytochrome P450PB-B-dependent 7-ethoxycoumarin O-deethylase activity in reconstituted phospholipid vesicles and in rat liver microsomes. In: Schuster J (ed) Cytochrome P450: Biochemistry and biophysics. Taylor and Francis, London, pp 215–218

    Google Scholar 

  • Müller-Enoch D, Churchill P, Fleischer S, Guengerich FP (1984) Interaction of liver microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase in the presence and absence of lipid. J Biol Chem 259: 8174–8182

    PubMed  Google Scholar 

  • Nadler SG, Strobel HW (1988) Role of electrostatic interactions in the reaction of NADPH-cytochrome P-450 reductase with cytochromes P-450. Arch Biochem Biophys 261: 418–429

    Article  PubMed  CAS  Google Scholar 

  • Omata Y, Friedman FK (1991) A fluorescence study of the interactions of benzo[tf]pyrene, cytochrome P450c and NADPH-cytochrome P450 reductase. Biochem Pharmacol 42: 97–101

    Article  PubMed  CAS  Google Scholar 

  • Seybert DW (1990) Lipid regulation of bovine cytochrome P450np activity. Arch Biochem Biophys 279: 188–194

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Tateishi T, Hatano M, Fujii-Kuriyama Y (1990) Probing the role of lysines and arginines in the catalytic function of cytochrome P450d by site-directed mutagenesis. J Biol Chem 266: 3372–3375

    Google Scholar 

  • Strobel HW, Lu AYH, Heidema J, Coon MJ (1970) Phosphatidylcholine requirement in the enzymatic reduction of hemoprotein P450 and in fatty acid, hydrocarbon, and drug hydroxylation. J Biol Chem 245: 4851–4854

    PubMed  CAS  Google Scholar 

  • Tamburini PP, Schenkman JB (1986) Differences in the mechanism of functional interaction between NADPH-cytochrome P450 reductase and its redox partners. Mol Pharmacol 30: 178–185

    PubMed  CAS  Google Scholar 

  • Taniguchi H, Pyerin W (1988) Phospholipid bilayer membranes play decisive roles in the cytochrome P450-dependent monooxygenase system. J Cancer Res Clin Oncol 114: 335–340

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi H, Imai Y, Iyanagi T, Sato R (1979) Interaction between NADPH- cytochrome P450 reductase and cytochrome P450 in the membrane of phosphatidylcholine vesicles. Biochim Biophys Acta 550: 341–356

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi H, Imai Y, Sato R (1984) Role of the electron transfer system in microsomal drug monooxygenase reaction catalyzed by cytochrome P-450. Arch Biochem Biophys 232: 585–596

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi H, Imai Y, Sato R (1987) Protein-protein and lipid-protein interactions in a reconstituted cytochrome P450 dependent microsomal monooxygenase. Biochemistry 26: 7084–7090

    Article  PubMed  CAS  Google Scholar 

  • Tsuprun VL, Myasoedova KN, Berndt P, Sograf ON, Orlova EV, Chernyak VYa, Archakov AI, Skulachev VP (1986) Quaternary structure of the liver microsomal cytochrome P-450. FEBS Lett 205: 35–40

    Article  PubMed  CAS  Google Scholar 

  • Wagner SL, Dean WL, Gray RD (1987) Zwitterionic detergent mediated interaction of purified cytochrome P-450LM4 from 5,6-benzoflavone-treated rabbits with NADPH-cytochrome P-450 reductase. Biochemistry 26: 2343–2348

    Article  PubMed  CAS  Google Scholar 

  • Wolff T, Wanders H, Guengerich FP (1989) Organic solvents as modifiers of aldrin epoxidase in reconstituted monooxygenase systems and in microsomes. Biochem Pharmacol 38: 4217–4223

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki H, Degawa M, Funae Y, Imaoka S, Inui Y, Guengerich FP, Shimada T (1991) Roles of different cytochrome P450 enzymes in bioactivation of the potent hepatocarcinogen 3-methoxy-4-amino-azobenzene by rat and human liver microsomes. Carcinogenesis 12: 133–139

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller-Enoch, D. (1993). Localization of Cytochrome P450 in Membranes: Reconstituted Systems. In: Schenkman, J.B., Greim, H. (eds) Cytochrome P450. Handbook of Experimental Pharmacology, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77763-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77763-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77765-3

  • Online ISBN: 978-3-642-77763-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics