Steroid 11β-Hydroxylase Isozymes (CYP11B1 and CYP11B2)

  • P. C. White
  • K. M. Curnow
  • L. Pascoe
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 105)


Cortisol is synthesized from cholesterol in the zona fasciculata of the adrenal cortex under the control of corticotropin (ACTH) (reviewed in New et al. 1989). Synthesis of Cortisol requires five enzymatic steps (Fig. 1): cleavage of the cholesterol side-chain to yield pregnenolone, 3β-dehydrogenation to progesterone, and successive hydroxylations at the 17α, 21 and 11β positions which are mediated by three distinct cytochrome P450 enzymes. A 17-deoxy pathway is also active in the zona fasciculata, in which 17α-hydroxylation does not occur, and the final product is normally corticosterone.


Adrenal Cortex Congenital Adrenal Hyperplasia Primary Aldosteronism Zona Glomerulosa Zona Fasciculata 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chua SC, Szabo P, Vitek A, Grzeschik KH, John M, White PC (1987) Cloning of cDNA encoding steroid 11β-hydroxylase (P450c11). Proc Natl Acad Sci USA 84: 7193–7197PubMedCrossRefGoogle Scholar
  2. Curnow KM, Tusie-Luna MT, Pascoe L, Natarajan R, Gu JL, Nadler JL, White PC (1991) The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Mol Endocrinol 5: 1513–1522PubMedCrossRefGoogle Scholar
  3. Curnow KM, Vitek J, White PC (1992) Point mutations in CYP11B1 causing steroid lip-hydroxylase deficiency. Clin Research 40: 310AGoogle Scholar
  4. Domalik LJ, Chaplin DD, Kirkman MS, Wu RC, Liu W, Howard TA, Seldin MF, Parker KL (1991) Different isozymes of mouse lip-hydroxylase produce mineralocorticoids and glucocorticoids. Mol Endocrinol 5: 1853–1861PubMedCrossRefGoogle Scholar
  5. Forest MG, Bétuel H, David M (1989) Prenatal treatment in congenital adrenal hyperplasia due to 21-hydroxylase deficiency: update 88 of the French multicentric study. Endocrine Res 15: 277–301CrossRefGoogle Scholar
  6. Globerman H, Rosier A, Theodor R, New MI, White PC (1988) An inherited defect in aldosterone biosynthesis caused by a mutation in or near the gene for steroid 11-hydroxylase. N Engl J Med 319: 1193–1197PubMedCrossRefGoogle Scholar
  7. Gomez-Sanchez CE, Gill JR, Ganguly A, Gordon RD (1988) Glucocorticoid- suppressible aldosteronism: a disorder of the adrenal transitional zone. J Clin Endocrinol Metab 67: 444–448PubMedCrossRefGoogle Scholar
  8. Helmberg A, Ausserer B, Kofler R (1992) Frameshift by insertion of two base pairs in codon 394 of CYP11B1 causes congenital adrenal hyperplasia due to steroid 11β-hydroxylase deficiency. J Clin Endocrinol Metab 75: 1278–1281PubMedCrossRefGoogle Scholar
  9. Honda SI, Morohashi KI, Omura T (1990) Novel cAMP regulatory elements in the promoter region of bovine P-450(11β) gene. J Biochem (Tokyo) 108: 1042–1049Google Scholar
  10. Imai M, Shimada H, Okada Y, Matsushima-Hibiya Y, Ogishima T, Ishimura Y (1990) Molecular cloning of a cDNA encoding aldosterone synthase cytochrome P-450 in rat adrenal cortex. FEBS Lett 263: 299–302PubMedCrossRefGoogle Scholar
  11. Kawamoto T, Mitsuuchi Y, Ohnishi T, Ichikawa Y, Yokoyama Y, Sumimoto H, Toda K, Miyahara K, Kuribayashi I, Nakao K, Hosoda K, Yamamoto Y, Imura H, Shizuta Y (1990a) Cloning and expression of a cDNA for human cytochrome P-450aldos as related to primary aldosteronism. Biochem Biophys Res Commun 173: 309–316CrossRefGoogle Scholar
  12. Kawamoto T, Mitsuuchi Y, Toda K, Miyahara K, Yokoyama Y, Nakao K, Hosoda K, Yamamoto Y, Imura H, Shizuta Y (1990b) Cloning of cDNA and genomic DNA for human cytochrome P-45011β. FEBS Lett 269: 345–349PubMedCrossRefGoogle Scholar
  13. Kirita S, Hashimoto T, Kitajima M, Honda S, Morohashi K, Omura T (1990) Structural analysis of multiple bovine P-450(11β) genes and their promoter activities. J Biochem (Tokyo) 108: 1030–1041Google Scholar
  14. Lauber M, Muller J (1989) Purification and characterization of two distinct forms of rat adrenal cytochrome P45011β: functional and structural aspects. Arch Biochem Biophys 274: 109–119PubMedCrossRefGoogle Scholar
  15. Lifton RL, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, Lalouel JM (1992) A chimeric lip-hydroxylase/aldosterone synthase gene causes glucocorticoid- remediable aldosteronism, a Mendelian cause of human hypertension. Nature 355: 262–265PubMedCrossRefGoogle Scholar
  16. Malee M, Mellon S (1991) Zone-specific regulation of two messenger RNAs for P450c11 in the adrenals of pregnant and nonpregnant rats. Proc Natl Acad Sci USA 88: 4731–4735PubMedCrossRefGoogle Scholar
  17. Matsukawa N, Nonaka Y, Ying Z, Higaki J, Ogihara T, Okamoto M (1990) Molecular cloning and expression of cDNAs encoding rat aldosterone synthase: variants of cytochrome P-45011β. Biochem Biophys Res Commun 169: 245–252PubMedCrossRefGoogle Scholar
  18. Mornet E, Dupont J, Vitek A, White PC (1989) Characterization of two genes encoding human steroid 11-hydroxylase (P-450 11β). J Biol Chem 264: 20961–20967PubMedGoogle Scholar
  19. Morohashi K, Nonaka Y, Kirita S, Hatano O, Takakusu A, Okamoto M, Omura T (1990) Enzymatic activities of P-450(11β)s expressed by two cDNAs in COS-7 cells. J Biochem 107: 635–640PubMedGoogle Scholar
  20. Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R, Fujii-Kuriyama Y, Gonzalez FJ, Guengerich FP, Gunsalus IC, Johnson EF, Loper JC, Sato R, Waterman MR, Waxman DJ (1991) The P450 superfamily: update on new sequences, gene mapping and recommended nomenclature. DNA 10: 1–13CrossRefGoogle Scholar
  21. New MI, Oberfield SE, Levine LS, Dupont B, Pollack MS, Gill JR, Bartter FC (1980) Demonstration of autosomal dominant transmission and the absence of HLA linkage in dexamethasone suppressible hyperaldosteronism. Lancet i: 550–551Google Scholar
  22. New MI, White PC, Pang S, Dupont B, Speiser PW (1989) The adrenal hyperplasias. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease, 6th edn. McGraw-Hill, New York, pp 1881–1917Google Scholar
  23. Oberfield SE, Levine LS, Stoner E, et al. (1981) Adrenal glomerulosa function in patients with dexamethasone suppressible hyperaldosteronism. J Clin Endocrinol Metab 53: 158–64PubMedCrossRefGoogle Scholar
  24. Ogishima T, Mitani F, Ishimura Y (1989a) Isolation of two distinct cytochromes P-45011β with aldosterone synthase activity from bovine adrenocortical mitochondria. J Biochem (Japan) 105: 497–499Google Scholar
  25. Ogishima T, Mitani F, Ishimura Y (1989b) Isolation of aldosterone synthase cytochrome P-450 from zona glomerulosa mitochondria of rat adrenal cortex. J Biol Chem 264: 10935–10938PubMedGoogle Scholar
  26. Ogishima T, Shibata H, Shimada H, Mitani F, Suzuki H, Saruta T, Ishimura Y (1991) Aldosterone synthase cytochrome P-450 expressed in the adrenals of patients with primary aldosteronism. J Biol Chem 266: 10731–10734PubMedGoogle Scholar
  27. Ohnishi T, Wada A, Lauber M, Yamano T, Okamoto M (1988) Aldosterone biosynthesis in mitochondria of isolated zones of adrenal cortex. J Steroid Biochem 31: 73–81PubMedCrossRefGoogle Scholar
  28. Pascoe L, Curnow KM, Slutzker L, Rosier A, White PC (1992a) Mutations in the human CYP11B2 (aldosterone synthase) gene causing corticosterone methyloxidase II deficiency. Proc Natl Acad Sci USA 89: 4996–5000PubMedCrossRefGoogle Scholar
  29. Pascoe L, Curnow KM, Slutzker L, Connell J, Speiser PW, New MI, White PC (1992b) Glucocorticoid suppressible hyperaldosteronism results from hybrid genes created by unequal crossovers between CYP11B1 and CYP11B2. Proc Natl Acad Sci USA 89: 8327–8331PubMedCrossRefGoogle Scholar
  30. Rice DA, Mouw AR, Bogerd AM, Parker KL (1991) A shared promoter element regulates the expression of three steroidogenic enzymes. Mol Endocrinol 5: 1552–1561PubMedCrossRefGoogle Scholar
  31. Rösler A, Rabinowitz D, Theodor R, Ramirez LC, Ulick S (1977) The nature of the defect in a salt-wasting disorder in Jews of Iran. J Clin Endocrinol Metab 44: 279–291PubMedCrossRefGoogle Scholar
  32. Rösler A, Weshler N, Lieberman E, Hochberg Z, Weidenfeld J, Sack J, Chemke J (1988) lip-hydroxylase deficiency congenital adrenal hyperplasia: update of prenatal diagnosis. J Clin Endocrinol Metab 66: 830–838Google Scholar
  33. Rösler A, Leiberman E, Cohen T (1992) High frequency of congenital adrenal hyperplasia (classic 11β-hydroxylase deficiency) among Jews from Morocco. Am J Med Genet 42: 827–834PubMedCrossRefGoogle Scholar
  34. Veldhuis JD, Kulin HE, Santen RJ, Wilson TE, Melby JC (1980) Inborn error in the terminal step of aldosterone biosynthesis. N Engl J Med 303: 117–121PubMedCrossRefGoogle Scholar
  35. Wagner MJ, Ge Y, Siciliano M, Wells DE (1991) A hybrid cell mapping panel for regional localization of probes to human chromosome 8. Genomics 10:114–125 White PC (1987) Genetics of steroid 21-hydroxylase deficiency. Rec Prog Hormone Res 43: 305–336Google Scholar
  36. White PC, Dupont J, New MI, Leiberman E, Hochberg Z, Rosier A (1991) A mutation in CYP11B1 (Arg-448 → His) associated with steroid 11β-hydroxylase deficiency in Jews of Moroccan origin. J Clin Invest 87: 1664–1667PubMedCrossRefGoogle Scholar
  37. Yanagibashi K, Haniu M, Shively JE, Shen WH, Hall P (1986) The synthesis of aldosterone by the adrenal cortex: two zones (fasciculata and glomerulosa) possess one enzyme for 11β-, 18-hydroxylation, and aldehyde synthesis. J Biol Chem 261: 3556–3562.PubMedGoogle Scholar
  38. Zachmann M, Tassinari D, Prader A (1983) Clinical annd biochemical variability of congenital adrenal hyperplasia due to 11β-hydroxylase deficiency. J Clin Endocrinol Metab 56: 222–229PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • P. C. White
  • K. M. Curnow
  • L. Pascoe

There are no affiliations available

Personalised recommendations