Skip to main content

Protein-Protein Interactions

  • Chapter
Cytochrome P450

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 105))

Abstract

Proteins exist in the cellular aqueous environment containing carbohydrate, lipid, nucleic acids and other proteins. While soluble proteins interact with their substrate in a three-dimensional matrix, a number of the cellular proteins exist in a membranous structure, located as components of one or another of the cellular membranes. Movement of these proteins is more restricted, and involves two-dimensional or translational mobility along the membrane. As one might expect, restriction of some proteins to a two-dimensional matrix would serve the purpose of facilitating their interactions. Indeed, a number of enzymes which function by interaction with other proteins, most notably electron transfer proteins, are membrane bound. One example of such enzymes are those serving the electron transfer pathways of the inner mitochondrial membrane. A second example would be the proteins localized to the endoplasmic reticulum and comprising a number of electron transfer oxidative pathways. Such proteins and their enzymatic activities are usually studied in the membrane fragments, e.g., the endoplasmic reticulum, the vesicular particles called microsomes (Claude 1943). The microsomes contain several electron transfer chains, all of which, parenthetically, may interact with the microsomal electron transfer hemoprotein cytochrome b 5 (Schenkman et al. 1976). These enzymes include the cytochrome P450 monooxygenases (Jansson et al. 1985 and references therein), the stearoyl CoA Δ9 desaturase (Strittmatter et al. 1974), the linolenoyl CoA Δ6 desaturase (Okayasu et al. 1981), the γ-linolenoyl CoA Δ5 desaturase (Do and Sprecher 1975), and the fatty acid elongase (Keyes et al. 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernhardt R, Dao NTN, Stiel H, Schwartze W, Friedrich J, Janig G-R, Ruckpaul K (1983) Modification of cytochrome P450 with fluorescein isothiocyanate. Biochim Biophys Acta 745: 140–148

    Article  PubMed  CAS  Google Scholar 

  • Bernhardt R, Pommerening K, Ruckpaul K (1987) Modification of carboxyl groups on NADPH-cytochrome P450 reductase involved in binding of cytochromes c and P450 LM2. Biochem Int 14: 823–832

    PubMed  CAS  Google Scholar 

  • Bernhardt R, Kraft R, Otto A, Ruckpaul K (1988) Electrostatic interactions between cytochrome P450 LM2 and NADPH-cytochrome P450 reductase. Biomed Biochim Acta 47: 581–592

    PubMed  CAS  Google Scholar 

  • Bilimoria MH, Kamin H (1973) The effect of high salt concentrations upon cytochrome c, cytochrome b5 and iron-EDTA reductase activities of liver microsomal NADPH-cytochrome c reductase. Ann NY Acad Sci 212: 428–448

    Article  PubMed  CAS  Google Scholar 

  • Black SD, French JS, Williams CH Jr, Coon MJ (1979) Role of hydrophobic polypeptide in the N-terminal region of NADPH-cytochrome P450 reductase in complex formation with P450 LM. Biochem Biophys Res Commun 91: 1528–1535

    Article  PubMed  CAS  Google Scholar 

  • Bonfils C, Balny C, Maurel P (1981) Direct evidence for electron transfer from ferrours cytochrome to the oxy ferrous cytochrome P450 LM2. J Biol Chem 256: 9457–9465

    PubMed  CAS  Google Scholar 

  • Bosterling B, Trudell JR (1982) Association of cytochrome b5 and cytochrome P450 reductase with cytochrome P450 in the membrane of reconstituted vesicles. J Biol Chem 257: 4783–4787

    PubMed  CAS  Google Scholar 

  • Chiang JYL (1981) Interaction of purified microsomal cytochrome P450 with cytochrome b5. Arch Biochem Biophys 211: 662–673

    Article  PubMed  CAS  Google Scholar 

  • Chu J-W, Kimura T (1973) Studies on adrenal steroid hydroxylases. Complex formation of the hydroxylase components. J Biol Chem 248: 5183–5187

    PubMed  CAS  Google Scholar 

  • Claude A (1943) The constitution of protoplasm. Science 97: 451–456

    Article  PubMed  CAS  Google Scholar 

  • Coghlan VM, Vickery LE (1991) Site-specific mutations in human ferredoxin that affect binding to ferridoxin reductase and cytochrome P450scc. J Biol Chem 266: 18606–18612

    PubMed  CAS  Google Scholar 

  • Dailey HA, Strittmatter P (1979) Modification and identification of cytochrome b5 carboxyl groups involved in protein-protein interaction with cytochrome b5 reductase. J Biol Chem 254: 5388–5396

    PubMed  CAS  Google Scholar 

  • Dailey HA, Strittmatter P (1980) Characterization of the interaction of amphipathic cytochrome b5 with stearyl coenzyme A desaturase and NADPH: cytochrome P450 reductase. J Biol Chem 255: 5184–5189

    PubMed  CAS  Google Scholar 

  • Do UH, Sprecher H (1975) Studies on the substrate specificity of the fatty acid Δ5 desaturase by the use of methyl branched isomers of eicosa-8,11,14 trienoic acid and the metabolism of these acids in rat liver. Arch Biochem Biophys 171: 597–603

    Article  PubMed  CAS  Google Scholar 

  • Gemzik B, Halvorson MR, Parkinson A (1990) Pronounced and differential effects of ionic strength and pH on testosterone oxidation by membrane-bound and purified forms of rat liver microsomal cytochrome P450. J Steroid Biochem 35: 429–440

    Article  PubMed  CAS  Google Scholar 

  • Geren LM, O’Brien P, Stonehuerner J, Millet F (1984) Identification of specific carboxylate groups on adrenodoxin that are involved in the interaction with adrenodoxin reductase. J Biol Chem 259: 2155–2160

    PubMed  CAS  Google Scholar 

  • Gum JR, Strobel HW (1981) Isolation of the membrane-binding peptide of NADPH-cytochrome P450 reductase: characterization of the peptide and its role in the interaction of reductase with cytochrome P450. J Biol Chem 256: 7478–7486

    PubMed  CAS  Google Scholar 

  • Hamamoto I, Ichikawa Y (1984) Modification of a lysine residue of adrenodoxin reductase, essential for complex formation with adrenodoxin. Biochim Biophys Acta 786: 32–41

    Article  PubMed  CAS  Google Scholar 

  • Hanukoglu I, Jefcoate CR (1980) Mitochondrial cytochrome P450scc. Mechanism of electron transport by adrenodoxin. J Biol Chem 255: 3057–3061

    PubMed  CAS  Google Scholar 

  • Holloway PW, Mantsch HH (1988) Infrared spectroscopic analysis of salt bridge formation between cytochrome b5 and cytochrome c. Biochemistry 27: 7991–7993

    Article  PubMed  CAS  Google Scholar 

  • Inano H, Tamaoki B-I (1986) Chemical modification of NADPH-cytochrome P450 reductase. Presence of a lysine residue in the rat hepatic enzyme as a recognition site of 2′-phosphate moiety of the cofactor. Eur J Biochem 155: 485–489

    Article  PubMed  CAS  Google Scholar 

  • Jansson I, Tamburini PP, Favreau LV, Schenkman JB (1985) The interaction of cytochrome b5 with four cytochrome P450 enzymes from the untreated rat. Drug Metab Dispos 13: 453–458

    PubMed  CAS  Google Scholar 

  • Jansson I, Epstein PM, Bains S, Schenkman JB (1987) Inverse relationship between cytochrome P450 phosphorylation and complexation with cytochrome b5 Arch Biochem Biophys 259: 441–448

    CAS  Google Scholar 

  • Juvonen RO, Iwasaki M, Negishi M (1992) Identification of residue 129 in mouse P450 Coh as a cytochrome b5 binding site and role of residue 209 in cytochrome b5-dependent stimulation of monooxygenase activities. FASEB J 6: A320

    Google Scholar 

  • Katarini M, Takikawa O, Sato H, Suhara K (1977) Formation of a cytochrome P450scc adrenodoxin complex. Biochem Biophys Res Commun 77: 804–809

    Article  Google Scholar 

  • Keyes SR, Alfano JA, Jansson I, Cinti DL (1979) Rat liver microsomal elongation of fatty acids: possible involvement of cytochrome b5. J Biol Chem 254: 7778–7784

    PubMed  CAS  Google Scholar 

  • Kikuta Y, Kusunose E, Matsubara S, Funae Y, Imaoka S, Kubota I, Kusunose M (1989) Purification and characterization of hepatic microsomal prostaglandin co-hydroxylase cytochrome P450 from pregnant rabbits. J Biochem (Tokyo) 106: 468–473

    CAS  Google Scholar 

  • Kuwahara S, Omura T (1980) Different requirement for cytochrome b5 in NADPH- supported O-deethylation of p-nitrophenetole catalyzed by two types of microsomal cytochrome P450. Biochem Biophys Res Commun 96: 1562–1568

    Article  PubMed  CAS  Google Scholar 

  • Lambeth JD, Kriengsiri S (1985) Cytochrome P450scc-adrenodoxin interactions. Ionic effects on binding and regulation of cytochrome reduction by bound steroid substrates. J Biol Chem 260: 8810–8816

    PubMed  CAS  Google Scholar 

  • Lambeth JD, Pember SO (1983) Cytochrome P450scc-adrenodoxin complex. Reduction properties of the substrate-associated cytochrome and relation of the reduction states of heme and iron centers to association of the proteins. J Biol Chem 258: 5596–5602

    PubMed  CAS  Google Scholar 

  • Lambeth JD, McCaslin DR, Kamin H (1976) Adrenodoxin reductase. Adrenodoxin complex. Catalytic and thermodynamic properties. J Biol Chem 251: 7545–7550

    PubMed  CAS  Google Scholar 

  • Lambeth JD, Seybert DW, Kamin H (1979) Ionic effects on adrenal steroidogenic electron transport. The role of adrenodoxin as an electron shuttle. J Biol Chem 254: 7255–7264

    PubMed  CAS  Google Scholar 

  • Lambeth JD, Geren LM, Millet F (1984) Adrenodoxin interaction with adrenodoxin reductase and cytochrome P450scc. Crosslinking of protein complexes and effects of adrenodoxin modification by EDC. J Biol Chem 259: 10025–10029

    PubMed  CAS  Google Scholar 

  • Lu AYH, Junk KW, Coon MJ (1969) Resolution of the cytochrome P450-containing ω-hydroxylation system of liver microsomes into three components. J Biol Chem 234: 3714–3721

    Google Scholar 

  • Matthew JB, Weber PC, Salemme FR, Richards FM (1983) Electrostatic orientation during electron transfer between flavodoxin and cytochrome c. Nature 301: 169–171

    Article  PubMed  CAS  Google Scholar 

  • Miwa GT, Lu AYH (1984) The association of cytochrome P450 and NADPH- cytochrome P450 reductase in phospholipid membranes. Arch Biochem Biophys 234: 161–166

    Article  PubMed  CAS  Google Scholar 

  • Morgan ET, Coon MJ (1984) Effect of cytochrome b5 on cytochrome P450 catalyzed reactions. Drug Metab Dispos 12: 358–364

    PubMed  CAS  Google Scholar 

  • Nadler SG, Strobel HW (1988) Role of electrostatic interactions in the reaction of NADPH-cytochrome P450 reductase with cytochromes P450. Arch Biochem Biophys 261: 418–429

    Article  PubMed  CAS  Google Scholar 

  • Nelson DR, Strobel HW (1988) On the membrane topology of vertebrate cytochrome P450 proteins. J Biol Chem 263: 6038–6050

    PubMed  CAS  Google Scholar 

  • Ng S, Smith MB, Smith HT, Millett F (1977) Effect of modification of individual cytochrome c lysines on the reaction with cytochrome b5. Biochemistry 16: 4975–4978

    Article  PubMed  CAS  Google Scholar 

  • Nisimoto Y (1986) Localization of cytochrome c-binding domain on NADPH-cytochrome P450 reductase. J Biol Chem 261: 14232–14239

    PubMed  CAS  Google Scholar 

  • Nisimoto Y, Lambeth JD (1985) NADPH-cytochrome P450 reductase-cytochrome b5 interactions: crosslinking of the phospholipid vesicle-associated proteins by a water-soluble carbodiimide. Arch Biochem Biophys 241: 386–396

    Article  PubMed  CAS  Google Scholar 

  • Nisimoto Y, Otsuka-Murakami H (1988) Cytochrome b5, cytochrome c, and cytochrome P450 interactions with NADPH-cytochrome P450 reductase in phospholipid vesicles. Biochemistry 27: 5869–5876

    Article  PubMed  CAS  Google Scholar 

  • Okayasu T, Nagao M, Ishibashi T, Imai Y (1981) Purification and partial characterization of linoleoyl-CoA desaturase from rat liver microsomes. Arch Biochem Biophys 206: 21–28

    Article  PubMed  CAS  Google Scholar 

  • Passon PG, Hultquist DE (1972) Soluble cytochrome b5 reductase from human erythrocytes. Biochim Biophys Acta 275: 62–73

    Article  PubMed  CAS  Google Scholar 

  • Phillips AH, Langdon RG (1962) Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization and kinetic studies. J Biol Chem 237: 2652–2660

    PubMed  CAS  Google Scholar 

  • Poulos TL, Kraut J (1980) A hypothetical model of cytochrome c peroxidase/cytochrome c electron transfer complex. J Biol Chem 255: 10322–10330

    PubMed  CAS  Google Scholar 

  • Prough RA, Masters BSS (1974) The mechanism of cytochrome b5 reduction by NADPH-cytochrome c reductase. Arch Biochem Biophys 165: 263–267

    Article  PubMed  CAS  Google Scholar 

  • Salemme FR (1976) A hypothetical structure for an intermolecular electron transfer complex of cytochromes c and b5. J Mol Biol 102: 563–568

    Article  PubMed  CAS  Google Scholar 

  • Schenkman JB, Jansson I, Robie-Suh KM (1976) The many roles of cytochrome b5 in hepatic microsomes. Life Sci 19: 611–624

    Article  PubMed  CAS  Google Scholar 

  • Schenkman JB, Tamburini PP, Jansson I, Epstein PM (1987) Interactions between cytochrome P450 and other components of the microsomal electron transfer system. In: Sato R, Omura T, Imai Y, Fujii-Kuriyama Y (eds) Cytochrome P450: new trends. Yamada Science Foundation, JAPAN, pp 59–64

    Google Scholar 

  • Shimizu T, Tateishi T, Hatano M, Fujii-Kuriyama Y (1991) Probing the role of lysines and arginines in the catalytic function of Cytochrome P450d by site-directed mutagenesis. Interaction with NADPH-cytochrome P450 reductase. J Biol Chem 266: 3372–3375

    PubMed  CAS  Google Scholar 

  • Smith MB, Stonehuerner J, Ahmed AJ, Staudenmayer N, Millett F (1980) Use of specific trifluoroacetylation of lysine residues in cytochrome c to study the reaction with cytochrome b5, cytochrome c, and cytochrome oxidase. Biochim Biophys Acta 592: 303–313

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter P, Spatz L, Corcoran D, Rogers MJ, Setlow B, Redline R (1974) Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc Natl Acad Sci USA 71: 4565–4569

    Article  PubMed  CAS  Google Scholar 

  • Strobel HW, Nadler SG, Nelson DR (1989) Cytochrome P450: cytochrome P450 reductase interactions. Drug Metab Rev 20: 519–533

    Article  PubMed  CAS  Google Scholar 

  • Tamura M, Yoshida S, Tamura T, Saitoh T, Takeshita M (1990) Effect of divalent cations on NADH-dependent and NADPH-dependent cytochrome b5 reduction by hepatic microsomes. Arch Biochem Biophys 280: 313–319

    Article  PubMed  CAS  Google Scholar 

  • Tamburini PP, Gibson GG (1983) Thermodynamic studies of protein-protein interactions between cytochrome P450 and cytochrome b5. J Biol Chem 258: 13444–13452

    PubMed  CAS  Google Scholar 

  • Tamburini PP, Schenkman JB (1986a) Mechanism of interaction between cytochromes P450 RLM5 and b5. Evidence for a electrostatic mechanism involving cytochrome b5 heme propionate groups. Arch Biochem Biophys 245: 512–522

    Article  PubMed  CAS  Google Scholar 

  • Tamburini PP, Schenkman JB (1986b) Differences in the mechanism of functional interaction between NADPH-cytochrome P450 reductase and its redox partners. Mol Pharmacol 30: 178–185

    PubMed  CAS  Google Scholar 

  • Tamburini PP, Schenkman JB (1987) Purification to homogeneity and enzymological characterization of a functional covalent complex composed of cytochromes P450 isozymes 2 and b5 from rabbit liver. Proc Natl Acad Sci USA 84: 11–15

    Article  PubMed  CAS  Google Scholar 

  • Tamburini PP, White RW, Schenkman JB (1985) Chemical characterization of protein-protein interactions between cytochrome P450 and cytochrome b5. J Biol Chem 260: 4007–4015

    PubMed  CAS  Google Scholar 

  • Tamburini PP, Jansson I, Favreau LV, Backes WL, Schenkman JB (1986a) Differences in the spectral interactions between NADPH-cytochrome P450 reductase and a series of cytochrome P450 enzymes. Biochem Biophys Res Commun 137: 437–442

    Article  PubMed  CAS  Google Scholar 

  • Tamburini PP, Macfarquhar S, Schenkman JB (1986b) Evidence of binary complex formation between cytochrome P450, cytochrome b5, and NADPH-cytochrome P450 reductase of hepatic microsomes. Biochem Biophys Res Commun 134: 519–526

    Article  PubMed  CAS  Google Scholar 

  • Tsubaki M, Iwamoto Y, Hiwatashi A, Ichikawa Y (1989) Inhibition of electron transfer from adrenodoxin to cytochrome P450scc by chemical modification with pyridoxal phosphate: Identification of adrenodoxin-binding site of cytochrome P450scc. Biochemistry 28: 6899–6907

    Article  PubMed  CAS  Google Scholar 

  • Tuls J, Geren L, Millet F (1989) Fluorescein isothiocyanate specifically modifies lysine 338 of cytochrome P450scc and inhibits adrenodoxin binding. J Biol Chem 264: 16421–16425

    PubMed  CAS  Google Scholar 

  • Vermilion JL, Ballou DP, Massey V, Coon MJ (1981) Separate roles for FMN and FAD in catalysis by liver microsomal NADPH-cytochrome P450 reductase. J Biol Chem 256: 266–277

    PubMed  CAS  Google Scholar 

  • Voznesensky AI, Schenkman JB (1992) The cytochrome P4502B4-NADPH cytochrome P450 reductase electron transfer complex is not formed by charge- pairing. J Biol Chem 267: 14669–14676

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schenkman, J.B. (1993). Protein-Protein Interactions. In: Schenkman, J.B., Greim, H. (eds) Cytochrome P450. Handbook of Experimental Pharmacology, vol 105. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77763-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77763-9_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77765-3

  • Online ISBN: 978-3-642-77763-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics