Advertisement

Cytochrome P450 in Unicellular Organisms

  • D. Sanglard
  • O. Käppeli
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 105)

Abstract

The ubiquity of monooxygenases among the many life forms existing in nature is an illustration of their important role in the maintenance of biological functions. The ability of these special enzymes to convert many substances to a reactive state is a property that both prokaryotes and eukaryotes have extensively integrated in their metabolism. The majority of cytochromes P450 forms that have so far been reported originate from higher eukaryotes. These enzymes have attracted the attention of many researchers in the pharmalogical and medical fields, since they are involved in the metabolisms of drugs and xenobiotica and have been linked to various health problems or are thought to be the indirect cause of several cancer forms.

Keywords

Bacillus Megaterium Candida Tropicalis Unicellular Organism Cytochrome P450 Monooxygenases Streptomyces Griseus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antai SP, Crawford DL (1983) Degradation of phenol by Streptomyces setonii. Can J Microbiol 29: 142–143CrossRefGoogle Scholar
  2. Aoyama Y, Yoshida Y (1978a) Interaction of lanosterol to cytochrome P-450 purified from yeast microsomes: evidence for contribution of cytochrome P-450 to lanosterol metabolism. Biochem Biophys Res Commun 82: 33–38PubMedCrossRefGoogle Scholar
  3. Aoyama Y, Yoshida Y (1978b) The 14α-demethylation of lanosterol by a reconstituted cytochrome P-450 system from yeast microsomes. Biochem Biophys Res Commun 85: 28–34PubMedCrossRefGoogle Scholar
  4. Aoyama Y, Yoshida Y, Hata S, Nishino T, Katsuki H, Maitra US, Mohan VP, Sprinson DB (1983) Altered cytochrome P-450 in a yeast mutant blocked in demethylating C-32 of lanosterol. J Biol Chem 258: 9040–9042PubMedGoogle Scholar
  5. Appleby CA (1967) A soluble hemoprotein P-450 from nitrogen-fixing Rhizopium bacteroids. Biochim Biophys Acta 147: 399–402PubMedGoogle Scholar
  6. Asperger O, Naumann A, Kleber HP (1981) Occurrence of cytochrome P-450 in Acinetobacter strains after growth on n-hexadecane. FEMS Microbiol Lett 11: 309–312CrossRefGoogle Scholar
  7. Atkins WM, Sligar SG (1988) The roles of active site hydrgen bonding in cytochrome P-450cam as revealed by site-directed mutagenesis. J Biol Chem 263: 18842–18849PubMedGoogle Scholar
  8. Atkins WM, Sligar SG (1989) Molecular recognition in cytochrome P-450: alteration of regioselective alkane hydroxylation via protein engineering. J Am Chem Soc 111: 2715–2717CrossRefGoogle Scholar
  9. Attar RM, Grotewold E, Tacciolo GE, Aisemberg GO, Torres HN, Judewicz ND (1989) A cycloheximide-inducible gene of Neurospora crassa belongs to the cytochrome P-450 superfamily. Nucleic Acid Res 17: 7535–7536PubMedCrossRefGoogle Scholar
  10. Berg A, Ingelman-Sundberg M, Gustafsson JA (1979) Purification and characterization of cytochrome P450meg. J Biol Chem 254: 5264–5271PubMedGoogle Scholar
  11. Boddupalli SS, Estabrook RW, Peterson JA (1990) Fatty acid monooxygenation by cytochrome P-450BM-3. J Biol Chem 265: 4233–4239PubMedGoogle Scholar
  12. Breskvar K, Cresnar B, Hudnick-Plevnik T (1987) Resolution and reconstitution of cytochrome P-450 containing steroid hydroxylation system of Rhizopus nigricans. J Steroid Biochem 26: 499–501PubMedCrossRefGoogle Scholar
  13. Briza P, Ellinger G, Winkler G, Breitenbach M (1990a) Characterization of a D,L-dityrosine-containing macromolecule from yeast ascospore walls. J Biol Chem 265: 11569–11574Google Scholar
  14. Briza P, Breitenbach M, Ellinger A, Segall J (1990b) Isolation of two developmentally regulated genes involved in spore wall maturation in Saccharomyces cerevisiae. Genes Dev 4: 1775–1789PubMedCrossRefGoogle Scholar
  15. Cardini G, Jurtshuk P (1968) Cytochrome P-450 involvement in the oxidation of n-octane by cell-free extracts of Corynebacterium sp. strain 7E1C. J Biol Chem 243: 6070–6072PubMedGoogle Scholar
  16. Cartwright NJ, Holdom KS, Broadbent DA (1971) Bacterial attack on phenolic ethers: resolution of a Nocardia O-demethylase and purification of a cytochrome P-450 component. Microbios 4: 7–12PubMedGoogle Scholar
  17. Chen C, Kalb VF, Turi T, Loper JC (1988) Primary structure of the cytochrome P-450 lanosterol 14α-demethylase gene from Candida tropicalis. DNA 7: 617–629PubMedCrossRefGoogle Scholar
  18. Dardas A, Gal D, Barrele M, Sauret-Ignazi G, Sterjiades R, Pelmont J (1985) The demethylation of guaicol by a new bacterial cytochrome P-450. Arch Biochem Biophys 236: 585–592PubMedCrossRefGoogle Scholar
  19. Desjardins AE, VanEtten HD (1986) Partial purification of pisatin demethylase, a cytochrome P-450 from the pathogenic fungus Nectria haematococca. Arch Microbiol 144: 84–90CrossRefGoogle Scholar
  20. Desjardins AE, Matthews DE, VanEtten HD (1984) Solubilization and reconstitution of pisatin demethylase, a cytochrome P-450 from the pathogenic fungus Nectria haematococca. Plant Physiol 75: 611–615PubMedCrossRefGoogle Scholar
  21. Düppel W, Lebeault JM, Coon MJ (1973) Properties of a yeast cytochrome P-450- containing enzyme system which catalyses the hydroxylation of fatty acids, alkanes and drugs. Eur J Biochem 36: 583–592PubMedCrossRefGoogle Scholar
  22. Ferris JP, MacDonnald LH, Patrie MA, Martin MA (1976) Aryl hydrocarbon hydroxylase activity in the fungus Cunnighamella baineiri: evidence for the presence of cytochrome P-450. Arch Biochem Biophys 175: 443–452PubMedCrossRefGoogle Scholar
  23. Foster BC, Buttar HS, Qureshi SA, McGilveray IJ (1989a) Propranolol metabolism by Cunninghamella bainieri. Xenobiotica 19: 539–546PubMedCrossRefGoogle Scholar
  24. Foster BC, Coutts RT, Pasutto FM (1989b) Biotransformation of aryl alkylamines by Cunninghamella baineiri. Xenobiotica 19: 531–538PubMedCrossRefGoogle Scholar
  25. Ghosh DK, Dutta D, Samanta TB, Mishra AK (1983) Microsomal benzo[a]pyrene hydroxylase in Aspergillus ochraceus TS: assay and characterization of the enzyme system. Biochem Biophys Res Commun 113: 497–505PubMedCrossRefGoogle Scholar
  26. Hamid AB, Smith JE (1987) The involvement of cytochrome P-450 monooxygenase system in aflatoxin biosynthesis by Aspergillus flavus. J Ind Microbiol 2: 137–142CrossRefGoogle Scholar
  27. He JS, Fulco AJ (1991) A barbiturate-regulated protein binding to a common sequence in the cytochrome P450 genes of rodents and bacteria. J Biol Chem 266: 7864–7869PubMedGoogle Scholar
  28. He JS, Ruettinger RT, Liu HM, Fulco AJ (1989) Molecular cloning, coding nucleotides and the deduced amino acid sequence of P-450BM-I from Bacillus megaterium. Biochim Biophys Acta 1009: 301–303PubMedGoogle Scholar
  29. Horii M, Ishizaki T, Paik SY, Manome T, Murooka Y (1990) An operon containing the genes for cholesterol oxidase and a cytochrome P-450-like protein from a Streptomyces sp. J Bacteriol 172: 3644–3653PubMedGoogle Scholar
  30. Imai M, Shimada H, Wanatabe Y, Matsushima-Hibiga Y, Makino R, Koga H, Horiuchi T, Ishimura Y (1989) Uncoupling of cytochrome P-450CAM monooxygenase reaction by a single mutation, threonine-252 to alanine or valine. A possible role of the hydroxy amino acid in oxygen activation. Proc Natl Acad Sei USA 86: 7823–7827CrossRefGoogle Scholar
  31. Ishida N, Aoyama Y, Hatanaka R, Oyama Y, Imajo S, Ishhiguro M, Oshima T, Noguchi T, Maitra US, Mohan VP, Sprinson DB, Yoshida Y (1988) A single amino acid substitution converts cytochrome P-45014DM to an inactive form, cytochrome P450SGI-complete primary structures deduced from cloned DNAs. Biochem Biophys Res Commun 155: 317–323PubMedCrossRefGoogle Scholar
  32. Kalb VF, Loper JC, Dey CR, Woods CW, Sutter TR (1986) Isolation of a cytochrome P450 structural gene from Saccharomyces cerevisiae. Gene 45: 237–245PubMedCrossRefGoogle Scholar
  33. Kalb VF, Woods CR, Turi TG, Dey CR, Sutter TR, Loper JC (1987) Primary structure of the P450 lanosterol demethylase gene from Saccharomyces cerevisiae. DNA 6: 529–537PubMedCrossRefGoogle Scholar
  34. Kanemoto RH, Powell AT, Akiyoshi DE, Regier DA, Kerstetter RA, Nester EW, Hawes MC, Gordon MP (1989) Nucleotide sequence and analysis of the plant-inducible locus pinF from Agrobacterium tumefaciens. J Bacteriol 171: 2506–2512PubMedGoogle Scholar
  35. Käppeli O (1986) Cytochromes P-450 of yeasts. Microbiol Rev 50: 244–258PubMedGoogle Scholar
  36. Katagari M, Ganguli BN, Gunsalus IC (1968) A soluble cytochrome P-450 functional in methylene hydroxylation. J Biol Chem 243: 3543–3546Google Scholar
  37. Kim BH, Fulco AJ (1983) Induction by barbiturates of a cytochrome P-450-dependent fatty acid monooxygenase in Bacillus megaterium: relationship between barbiturate structure and inducer activity. Biochem Biophys Res Commun 116: 843–850PubMedCrossRefGoogle Scholar
  38. Kizawa H, Tomura D, Oda M, Fukamizu A, Hoshino T, Gotoh O, Yasui T, Shoun H (1991) Nucleotide sequence of the unique nitrate/nitrite-inducible cytochrome P-450 cDNA from Fusarium oxysporium. J Biol Chem 266: 10632–10636PubMedGoogle Scholar
  39. Kunz DA, Reddy GS, Vatvars A (1985) Identification of transformation products arising from bacterial oxidation of codeine by Streptomyces griseus. Appl Environ Microbiol 50: 680–685Google Scholar
  40. Lai MH, Kirsch DR (1989) Nucleotide sequence of cytochrome P450 LIA1 (lanosterol 14α-demethylase) from Candida albicans. Nucleic Acid Res 17: 804PubMedCrossRefGoogle Scholar
  41. Li H, Darwish K, Poulos TL (1991) Characterization of recombinant Bacillus megaterium cytochrome P-450BM-3 and its two functional domains. J Biol Chem 266: 11909–11914PubMedGoogle Scholar
  42. Lindenmayer A, Smith L (1964) Cytochromes and other pigments of baker’s yeast grown aerobically and anaerobically. Biochim Biophys Acta 93: 445–461PubMedCrossRefGoogle Scholar
  43. Madhyasta KM, Rangachari PN, Raghabendra RM, Bhattacharyya PK (1968) Microbiological transformations of terpenes: XV. Enzyme systems in the catabolism of p-cymene in PL-strains. Indian J Biochem Biophys 5: 167–173Google Scholar
  44. Madhyasta KM, Bhattacharyya PK, Vaidyanathan CS (1977) Metabolism of a monoterpene alcohol, linalool, by a soil Pseudomonad. Can J Microbiol 23: 230–239CrossRefGoogle Scholar
  45. Marichal P, Vanden Bossche H, Bellens D, Janssen PAJ (1989) Cytochrome P-450 of Aspergillus fumigatus - effects of itraconazole and ketoconazole. In: Schuster I (ed) Cytochrome P-450: biochemistry and biophysics. Taylor and Francis, London, p 177Google Scholar
  46. Matsuoka M, Miyakoshi S, Tanzawa K, Nakahara K, Hosobuchi M, Serizawa N (1989) Purification and characterization of cytochrome P-450sca from Streptomyces carbophilus. J Biochem (Tokyo): 707–713Google Scholar
  47. Miao VPW, Matthews DE, VanEtten HD (1991) Identification and chromosomal locations of a family of cytochrome P-450 genes for pisatin detoxification in the fungus Nectria haematococca. Mol Gen Genet 226: 214–223PubMedCrossRefGoogle Scholar
  48. Miura Y, Fulco AJ (1974) (co-2) Hydroxylation of fatty acids by a soluble system from Bacillus megaterium. J Biol Chem 249: 1880–1888Google Scholar
  49. Miura Y, Fulco AJ (1975) ω-1, ω-2, ω-3 Hydroxylation of long chain fatty acids, amides and alcohols by a soluble enzyme system from Bacillus megaterium. Biochim Biophys Acta 388: 305–317Google Scholar
  50. Müller HG, Schunck WH, Riege P, Honeck H (1984) Cytochrome P-450 of microorganisms. In: Rückpaul K, Rein H (eds) Cytochrome P-450. Akademie, Berlin, p 337Google Scholar
  51. Murakami H, Yabusaki Y, Sakaki T, Shibata M, Ohkawa H (1990) Expression of cloned yeast NADPH-cytochrome P450 reductase gene in Saccharomyces cerevisiae. J Biochem (Tokyo) 108: 859–865Google Scholar
  52. Nahri LO, Fulco A J (1982) Phenobarbital induction of a soluble cytochrome P-450- dependent fatty acid monooxygenase in Bacillus megaterium. J Biol Chem 257: 2147–2150Google Scholar
  53. Nahri LO, Fulco AJ (1986) Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 262: 7160–7169Google Scholar
  54. Nahri LO, Fulco AJ (1987) Identification and characterisation of two functional domains on cytochrome P-450BM-3, a catalytically self-sufficient monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 262: 6683–6690Google Scholar
  55. Nebert DW, Nelson DR, Coon MJ, Estabrook RW, Feyereisen R, Fujii-Kuriyama Y, Gonzalez FJ, Guengerich F, Gunsalus IC, Johnson EF, Loper JC, Sato R, Waterman MR, Waxman DJ (1991) The P450 superfamily: update on new sequences, gene mapping, and recommended nomenclature. DNA Cell Biol 10: 1–14PubMedCrossRefGoogle Scholar
  56. O’Keefe DP, Romesser JA, Leto KJ (1987) Plant and bacterial cytochrome P-450: involvement in herbicide metabolism. Recent Adv Phytochem 21: 151–173Google Scholar
  57. O’Keefe DP, Romesser JA, Leto KJ (1988) Identification of constitutive and herbicide inducible cytochrome P-450 in Streptomyces griseolus. Arch Microbiol 149: 406–412CrossRefGoogle Scholar
  58. Ohkuma M, Tanimoto T, Yano K, Takagi M (1991) CYP52 (Cytochrome P450alk) multigene family in Candida maltosa, molecular cloning and nucleotide sequence of two tandemly arranged genes. DNA Cell Biol 10: 271–282PubMedCrossRefGoogle Scholar
  59. Omer CA, Lenstra R, Litle PJ, Dean C, Tepperman JM, Leto KJ, Romesser JA, O’Kefee DP (1990) Genes for two herbicide-inducible cytochromes P-450 form Streptomyces griseolus. J Bacteriol 172: 3335–3345PubMedGoogle Scholar
  60. Ouzounis CA, Melvin WT (1991) Primary and secondary structural patterns in eukaryotic cytochrome P-450 families correspond to structures of the helix-rich domain of Pseudomonas putida P-450cam. Eur J Biochem 198: 307–315PubMedCrossRefGoogle Scholar
  61. Peterson JA, Mock DM (1975) Metabolic control of cytochrome P-450cam. In: Cooper DY, Rosenthal O, Snyder R, Witmer C (eds) Cytochrome P-450 and b5. Plenum, New York, p 311Google Scholar
  62. Poulos TL, Finzel BC, Howard AJ (1987) High resolution crystal structure of cytochrome P450cam. J Mol Biol 195: 687–700PubMedCrossRefGoogle Scholar
  63. Rama Devi J, Bhat SG, Bhattacharyya PK (1978) Microbial transformations of terpenes: XXIV. Pathways of degradation of linaool in Pseudomonas icognita, linaool strain. Indian J Biochem Biophys 15: 323–327PubMedGoogle Scholar
  64. Roome PV, Philley JC, Peterson JA (1983) Purification and properties of putidaredoxin reductase. J Biol Chem 258: 2593–2598PubMedGoogle Scholar
  65. Ruettinger RT, Wen LP, Fulco AJ (1989) Coding nucleotide 5’regulatory, and deduced acid sequences of P-450BM-3, a single peptide cytochrome P-450: NADPH-P-450 reductase from Bacillus megaterium. J Biol Chem 264: 10987–10995PubMedGoogle Scholar
  66. Sanglard D, Fiechter A (1989) Heterogeneity within the alkane-inducible cytochrome P450 gene family of the yeast Candida tropicalis. FEBS Lett 256: 128–134PubMedCrossRefGoogle Scholar
  67. Sanglard D, Loper JC (1989) Characterization of the alkane-inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis: identification of a new P450 gene family. Gene 76: 121–136PubMedCrossRefGoogle Scholar
  68. Sanglard D, Kappeli O, Fiechter A (1984) Metabolic conditions determining the composition and catalytic activity of cytochrome P-450 monooxygenases in Candida tropicalis. J Bacteriol 157: 297–302PubMedGoogle Scholar
  69. Sanglard D, Kappeli O, Fiechter A (1986) Distinction of different types of cytochrome P-450 from the yeast Candida tropicalis and Saccharomyces uvarum. Arch Biochem Biophys 251: 176–286CrossRefGoogle Scholar
  70. Sanglard D, Chen C, Loper JC (1987) Isolation of the alkane inducible P450 (P450alk) gene from the yeast Candida tropicalis. Biochem Biophys Res Commun 144: 251–257PubMedCrossRefGoogle Scholar
  71. Sanglard D, Beretta I, Wagner M, Käppeli O, Fiechter A (1990) Functional expression of the alkane-inducible monooxygenase system of the yeast Candida tropicalis in Saccharomyces cerevisae. Biocatalysis 4: 19–28CrossRefGoogle Scholar
  72. Sariaslani FS, Kunz DA (1986) Induction of cytochrome P-450 in Streptomyces griseus. Biochem Biophys Res Commun 141: 405–410PubMedCrossRefGoogle Scholar
  73. Sariaslani FS, Rosazza JP (1983) Novel biotransformation of 7-ethoxycoumarin by Streptomyces griseus. Appl Environ Microbiol 46: 468–474PubMedGoogle Scholar
  74. Sariaslani FS, Rosazza JP (1984) Biocatalysis in natural products chemistry. Enzyme Micro Technol 6: 242–253CrossRefGoogle Scholar
  75. Sariaslani FS, McGee LR, Ovenall DW (1987) Microbial transformation of precocene II: oxidative reactions by Streptomyces griseus. Appl Environ Microbiol 53: 1780–1784PubMedGoogle Scholar
  76. Schunck WH, Riege P, Honeck H, Müller HG (1983) Isolierung und Rekonstitution des Alkan-Monooxygenase-Systems der Hefe Lodderomyces elongisporus. Z Allg Mikrobiol 23: 653–660CrossRefGoogle Scholar
  77. Schunck WH, Kärgel E, Gross B, Wiedman B, Mauersberger S, Köpke K, Kiessling U, Strauss M, Gaestel M, Müller HG (1989) Molecular cloning and characterization of the primary structure of the alkane hydroxylating cytochrome P-450 from the yeast Candida maltosa. Biochem Biophys Res Commun 161: 843–850PubMedCrossRefGoogle Scholar
  78. Schwalb H, Nahri LO, Fulco AJ (1985) Purification and characterization of phenobarbitol-induced cytochrome P-450BM-I from Bacillus megaterium ATCC 15481. Biochim Biophys Acta 838: 302–311PubMedCrossRefGoogle Scholar
  79. Seghezzi W, Sanglard D, Fiechter A (1991) Characterization of a second alkane-inducible cytochrome P450-encoding gene, CYP52A2, from Candida tropicalis. Gene 106: 51–60PubMedCrossRefGoogle Scholar
  80. Serizawa N, Nakagawa K, Hamano K, Tsujita Y, Terahara A, Kuwano H (1983a) Microbial hydroxylation of ML-236B (compactin) and monacolink CMB-530B. J Antibiot (Tokyo) 36: 604–607Google Scholar
  81. Serizawa N, Nakagawa K, Hamano K, Tsujita Y, Terahara A, Kuwano H (1983b) Microbial hydroxylation of ML-236B (compactin). Studies on microorganisms capable of 3ß-hydroxylation of ML-236B. J Antibiot (Tokyo) 36: 887–891Google Scholar
  82. Sewell GJ, Soper CJ, Parfitt RT (1984) The screening of some microorganisms for their ability to N-dealkylate drug molecules. Appl Microbiol Biotechnol 19: 247–251CrossRefGoogle Scholar
  83. Shaffie A, Hutchinson CR (1987) Macrolide antibiotic biosynthesis: isolation and properties of two forms of 6-deoxyerythronolide B hydroxylase from Saccharopolyspora erythracea ( Streptomyces erythreus ). Biochemistry 26: 6204–6210CrossRefGoogle Scholar
  84. Shafiee A, Hutchinson CR (1988) Purification and reconstitution of the electron transport components for 6-deoxyerythronolide B hydroxylase, a cytochrome P-450 enzyme of macrolide antibiotic (erythromycin) biosynthesis. J Bacteriol 170: 1548–1553PubMedGoogle Scholar
  85. Shoun H, Tanimoto T (1991) Denitrification by the fungus Fusarium oxysporium and the involvement of cytochrome P-450 in the respiratory nitrite reduction. J Biol Chem 266: 11078–11082PubMedGoogle Scholar
  86. Shoun H, Sudo Y, Seto Y, Beppu T (1983) Purification and properties of a cytochrome P-450 of a fungus, Fusarium oxysporium. J Biochem 94: 1219–1229PubMedGoogle Scholar
  87. Shoun H, Sudo Y, Seto Y, Beppu T (1985) Subterminal hydroxylation of fatty acids by a cytochrome P-450-dependent enzyme system from a fungus, Fusarium oxysporium. J Biochem (Tokyo) 97: 755–763Google Scholar
  88. Shoun H, Suyama W, Yasui T (1988) Soluble, nitrate/nitrite-inducible cytochrome P-450 of the fungus, Fusarium oxysporium. FEBS Lett 244: 11–14CrossRefGoogle Scholar
  89. Sligar SG, Murray RI (1986) Cytochrome P-450cam and other bacterial P-450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P-450. Plenum, New York, p 429Google Scholar
  90. Sutherland JB (1986) Demethylation of veratrole by cytochrome P-450 in Streptomyces setonii. Appl Environ Microbiol 52: 98–100PubMedGoogle Scholar
  91. Sutter T, Loper JC (1989) Disruption of the Saccharomyces cerevisiae gene for NADPH-cytochrome P450 reductase causes increased sensitivity to ketokonazole. Biochem Biophys Res Commun 160: 1257–1266PubMedCrossRefGoogle Scholar
  92. Sutter T, Sanglard D, Loper JC (1990) Isolation and characterization of the alkane-inducible NADPH-cytochrome P-450 oxidoreductase gene from Candida tropicalis. J Biol Chem 265: 16428–16436PubMedGoogle Scholar
  93. Takagi M, Ohkuma M, Kobayashi N, Wanatabe M, Yano K (1989) Purification of cytochrome P-450alk from n-alkane-grown cells of Candida maltosa, and cloning and nucleotide sequencing of the coding gene. Agric Biol Chem 53: 2217–2226CrossRefGoogle Scholar
  94. Trinn M, Käppeli O, Fiechter A (1982) Occurrence of cytochrome P-450 in continuous cultures of Saccharomyces cerevisiae. Eur J Appl Microbiol Biotechnol 15: 64–68CrossRefGoogle Scholar
  95. Trower MK, Sariaslani FS, Kitson FG (1988) Xenobiotic oxidation by cytochrome P-450-enriched extracts of Streptomyces griseus. Biochem Biophys Res Commun 157: 1417–1422PubMedCrossRefGoogle Scholar
  96. Trower MK, Sariaslani FS, O’Keefe DP (1989) Purification and characterization of a soybean-induced cytochrome P-450 from Streptomyces griseus. J Bacteriol 171: 1781–1787PubMedGoogle Scholar
  97. Ullah AJH, Murray RI, Battacharyya PK, Wagner GC, Gunsalus IC (1990) Protein components of a cytochrome P-450 linaool 8-methyl hydroxylase. J Biol Chem 265: 1345–1351PubMedGoogle Scholar
  98. Unger BP, Grunsalus IC, Sligar SG (1986) Nucleotide sequence of the Pseudomonas putida cytochrome P-450cam gene and its expression in Escherichia coli. J Biol Chem 201: 1158–1163Google Scholar
  99. Vanden Bossche H (1985) Biochemical targets for antifungal azole derivates: hypothesis on the mode of action. Curr Top Med Mycol 1: 313CrossRefGoogle Scholar
  100. Vanden Bossche H, Marichal P, Gorrens J, Coen MC, Willemsens G, Bellens D, Roels I, Moereels H and Janssen PAJ (1989) Biochemical approaches to selective antifungal activity. Focus on azole antifungals. Mycoses 32: 35–52CrossRefGoogle Scholar
  101. Vanden Bossche H, Maruchal P, Gorens J, Bellens D, Moereels H, Janssen PAJ (1990) Mutation in cytochrome P-450 dependent 14α-demethylase results in decreased affinity to azole antifungals. Biochem Soc Trans 18: 56–59Google Scholar
  102. Van Gorcom RFM, Boschloo JG, Kuijvenhoven A, Lange J, van Vark AJ, Bos CJ, van Balken JAM, Pouwels PH, van der Hondel CAMJJ (1990) Isolation and molecular characterization of the benzoate-para-hydroxylase gene (bphA) of Aspergillus niger: a member of a new gene family of the cytochrome P450 superfamily. Mol Gen Genet 223: 192–197PubMedCrossRefGoogle Scholar
  103. Weltring KM, Turgeon BG, Yoder OC, VanEtten HD (1988) Isolation of a phytoalexin-detoxification gene from the plant pathogenic fungus Nectria haematococca by detecting its expression in Aspergillus nidulans. Gene 68: 335–344PubMedCrossRefGoogle Scholar
  104. Wen LP, Fulco AJ (1987) Cloning of the gene encoding a catalytically self-sufficient cytochrome P-450 fatty acid monooxygenase induced by barbiturates in Bacillus megaterium and its functional expression and regulation in heterologous (Escherichia coli) and homologous ( Bacillus megaterium) hosts. J Biol Chem 2262: 6676–6682Google Scholar
  105. Yabusaki Y, Murakami H, Ohkawa H (1988) Primary structure of Saccharomyces cerevisiae NADPH-cytochrome P450 reductase deduced from nucleotide sequence of its cloned gene. J Biochem (Tokyo) 103: 1004–1010Google Scholar
  106. Yoshida Y (1988) Cytochrome P450 of fungi: primary target for antifungal agents. Curr Top Med Mycol 11: 388CrossRefGoogle Scholar
  107. Yoshida Y, Aoyama Y (1986) Interaction of azole fungicides with yeast cytochrome P-450 which catalyses lanosterol 14a-demethylation. In: Iwata K, Vanden Bossche H (eds) In vitro and in vivo evaluation of antifungal agents. Elseviers, Amsterdam, p 123Google Scholar
  108. Yu CA, Gunsalus IC, Katagari M, Suhara K, Takemori S (1974) Cytochrome P-450cam: I. Crystallisation and properties. J Biol Chem 249: 94–101PubMedGoogle Scholar
  109. Zvelebil MJJM, Wolf CR, Sternberg MJE (1991) A predicted three dimensional structure of human cytochrome P450: implications of substrate specificity. Protein Eng 4: 272–282CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • D. Sanglard
  • O. Käppeli

There are no affiliations available

Personalised recommendations