Skip to main content

Morphological Changes in Cultures of Hippocampus Following In Vitro Irradiation

  • Conference paper
Risk Assessment of Prenatally-Induced Adverse Health Effects

Abstract

In our previous study (Hamdorf et al. 1990) we showed that irradiation of the rat caused a number of morphological changes in neurons and glial cells in the developing rat brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angevine JB (1965) Time of origin in the hippocampal region. Exptl Neurol Suppl 2: 1–70.

    Google Scholar 

  • Bassant MH, Court L (1978) Effects of whole body-gamma-irradiation on the activity of rabbit hippocampal neurons. Radiat Res 75: 593–606.

    Article  PubMed  CAS  Google Scholar 

  • Borges MM, Paula-Barbosa MM, Volk B (1986) Chronic alcohol consumption induces lipofuscin deposition in the rat hippocampus. Neurobiol Aging 7: 347–355.

    Article  PubMed  CAS  Google Scholar 

  • Chapman PH, Young RJ (1968) Effect of cobalt 60 gamma irradiation on blood pressure and cerebral blood flow in the Macaca mulatta. Radiat Res 35: 78–85.

    Article  PubMed  CAS  Google Scholar 

  • Cockerham LG, Cervany TJ, Hampton JD (1986) Postradiational regional cerebral blood flow in primates. Aviat Space Environ Med 57: 578–582.

    PubMed  CAS  Google Scholar 

  • Crain B, Cotman C, Taylor D, Lynch G (1973) A quantitative electron microscopic study of synaptogenesis in the dentate gyrus of the rat. Brain Res 63: 195–204.

    Article  PubMed  CAS  Google Scholar 

  • Frotscher M, Hamori J, Wenzel J (1977) Transneural effects of enthorhinal lesions in the early postnatal period of synaptogenesis in the hippocampus of the rat. Exptl Brain Res 30: 549–560.

    Article  CAS  Google Scholar 

  • Gähwiler BH (1984) Slice cultures of cerebellar, hippocampal and hypothalamic tissue. Experientia 40: 236–243.

    Google Scholar 

  • Gaidamakin NA, Ushakov IB (1989) The state of synapses of the cortex of cerebral hemispheres on gamma-irradiation. Neurosci Behav Physiol 19: 483–488.

    Article  PubMed  CAS  Google Scholar 

  • Gilmore SA (1963) The effects of X-irradiation on the spinal cords of neonatal rats. II. Histological observations. J Neuropathol Exptl Neurol 22: 294–301.

    Article  CAS  Google Scholar 

  • Gilmore SA (1966) Delayed myelination of neonatal rat spinal cord induced by X-irradiation. Neurology 16: 749–753.

    Google Scholar 

  • Griffin TW, Rasey JS, Bleyer WA (1977) The effect of photon irradiation on blood brain barrier permeability to methotrexate in mice. Cancer 40: 1109–1111.

    Article  PubMed  CAS  Google Scholar 

  • Hamdorf G, Shahar A, Cervós-Navarro J, Scheffler A, Sparenberg A, Skoberla A (1990) Morphological changes in cultures of hippocampus following prenatal irradiation in the rat. J Neurosci Res 26: 327–333.

    Article  PubMed  CAS  Google Scholar 

  • Hamori J (1973) The inductive role of presynaptic axons in the development of postsynaptic spines. Brain Res 62: 337–344.

    Article  PubMed  CAS  Google Scholar 

  • Hicks SP, D’Amato CJ (1963) Low dose radiation of the developing brain. Science 141: 903–905.

    Article  PubMed  CAS  Google Scholar 

  • Hornsey S, Myers R, Jenkins T (1990) The reduction of radiation damage to the spinal cord by post-irradiation administration of vasoactive drugs. Int J Radiat Oncol Biol Phys 18: 1437–1442.

    Article  PubMed  CAS  Google Scholar 

  • Jaberaboansari A, Nelson GB, Roti JL, Wheeler KT (1988) Postirradiation alterations of neuronal chromatin structure. Radiat Res 114: 94–104.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs AJ, Maniscalco WM, Parkhurst AB, Finkelstein JN (1986) In vivo and in vitro demonstration of reduced myelin synthesis following early postnatal exposure to ionizing radiation in the rat. Radiat Res 105: 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Kirino T, Tamura A, Sano K (1985) Selective vulnerability of the hippocampus to ischemia — reversible and irreversible types of ischemic cell damage. Prog Brain Res 63: 39–58.

    Article  PubMed  CAS  Google Scholar 

  • Kriegel H, Schmahl W, Gerber GB, Stieve FE (eds) (1986) Radiation Risks to the Developing Nervous System. Gustav Fischer, Stuttgart, New York.

    Google Scholar 

  • McWilliams JR, Lynch G (1984) Synaptic density and axonal sprouting in rat hippocampus: stability in adulthood and decline in late adulthood. Brain Res 294: 152–156.

    Article  PubMed  CAS  Google Scholar 

  • Miller RW, Mulvihill JJ (1976) Small head size after atomic irradiation. Teratology 14: 335–358.

    Article  Google Scholar 

  • Mole RH (1986) Problems related to prenatal exposure of the nervous system. History and perspective. In: Kriegel H, Schmahl W, Gerber GB, Stieve FE (eds) Radiation Risks to the Developing Nervous System, Gustav Fischer, Stuttgart, New York.

    Google Scholar 

  • Nolan CC, Brown AW (1989) Reversible neuronal damage in hippocampal pyramidal cells with triethyllead. The role of astrocytes. Neuropathol Appl Neurobiol 15: 441–457.

    Article  PubMed  CAS  Google Scholar 

  • Peimer SI, Dudkin HO, Swerdlow AG (1986) Response of hippocampal pacemaker-like neurons to low doses of ionizing radiation. Int J Radiat Biol 49: 597–600.

    Article  CAS  Google Scholar 

  • Peters A, Plalay SL, Webster HF (1991) The fine structure of the nervous system. Neurons and their supporting cells. Oxford University Press, New York.

    Google Scholar 

  • Raleigh JA, Kremers W, Gabourg B (1977) Dose-rate and oxygen effects in models of lipid membranes: linoleic acid. Int J Radiat Biol 31: 203–213.

    Article  CAS  Google Scholar 

  • Reyners H, Gianfelici-de-Reyners E, Malsin JR (1982) The beta astrocyte: a newly recognized radiosensitive glial cell type in the cerebral cortex. J. Neurocytol 11: 967–983.

    Article  CAS  Google Scholar 

  • Schmidt SL, Lent R (1987) Effects of prenatal irradiation on the development of cerebral cortex and corpus callosum of the mouse. J Comp Neurol 264: 193–204.

    Article  PubMed  CAS  Google Scholar 

  • Siesjö BK, Rehncrona S, Smith, D (1980) Neuronal cell damage in the brain: possible involvement of oxidative mechanisms. Acta Physiol Scand Suppl 492: 121–128.

    PubMed  Google Scholar 

  • Siesjö BK (1981) Cell damage in the brain: A speculative synthesis. J Cereb Blood Flow Metab 1: 155–185.

    Article  PubMed  Google Scholar 

  • Sims TJ, Gilmore SA (1989) Interactions between Schwann cells and CNS axons following a delay in the normal formation of central myelin. Exp Brain Res 75: 513–522.

    Article  PubMed  CAS  Google Scholar 

  • Sims TJ, Gilmore SA, Waxman SG (1987) Temporary adhesions between axons and myelinforming processes. Develop Brain Res 40: 223–232.

    Article  Google Scholar 

  • Suzuki R, Yamaguchi T, Li CL, Klatzo I (1983) The effects of 5-minute ischemia in Mongolian gerbils. II. Changes of spontaneous neuronal activity in cerebral cortex and CA1 sector of hippocampus. Acta Neuropathol (Berlin) 60: 217–222.

    Article  CAS  Google Scholar 

  • Tolliver JM, Pellmar TC (1987) Ionizing radiation alters neuronal excitability in hippocampal slice of the guinea pig. Radiat Res 112: 555–563.

    Article  PubMed  CAS  Google Scholar 

  • Wanner RA, Edwards MJ (1983) Comparison of the effects of radiation and hyperthermia on prenatal retardation of brain growth of guinea-pigs. Brit J Radiol 56: 33–39.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cervós-Navarro, J., Hamdorf, G., Becker, A., Scheffler, A. (1992). Morphological Changes in Cultures of Hippocampus Following In Vitro Irradiation. In: Neubert, D., Kavlock, R.J., Merker, HJ., Klein, J. (eds) Risk Assessment of Prenatally-Induced Adverse Health Effects. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77753-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77753-0_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77755-4

  • Online ISBN: 978-3-642-77753-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics