Skip to main content

A Workbench for Discovering Task Specific Theories of Learning

  • Conference paper
New Directions in Educational Technology

Part of the book series: NATO ASI Series ((NATO ASI F,volume 96))

  • 415 Accesses

Abstract

This chapter examines why learning theories expressed as artificial intelligence programs have not had much direct effect on education and training. It suggests a new research direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. R. The Architecture of Cognition, Cambridge, MA: Harvard. 1983.

    Google Scholar 

  2. Anderson, J. R. Skill acquisition: Compilation of weak-method problem solutions. Psychological Review, 94 (2), 192–210. 1987.

    Article  Google Scholar 

  3. Anderson, J. R. The Adaptive Character of Thought. Cambridge, MA: MIT Press, (in press).

    Google Scholar 

  4. Anderson, J. R., Boyle, C. F., Farrell, R., Reiser, B. J. Cognitive principles in the design of computer tutors. In Proceedings of the Cognitive Science Society Conference. Hillsdale, NJ: Erlbaum. 1984.

    Google Scholar 

  5. Anzai, T. Doing, understanding and learning in problem solving. In D. Klahr, P. Langley, R. Neches (Eds.), Production System Models of Learning and Development. Cambridge, MA: MIT Press. 1987.

    Google Scholar 

  6. Bhaskar, R. Simon, H. A. Problem solving in a semantically rich domains: An example from engineering thermodynamics. Cognitive Science, 1, 193–215. 1977.

    Article  Google Scholar 

  7. Brown, J. S. VanLehn, K. (1980). Repair Theory: A generative theory of bugs in procedural skills. Cognitive Science, 4, 379–426.

    Article  Google Scholar 

  8. Burton, R. B. Diagnosing bugs in a simple procedural skill. In D. H. Sleeman J. S. Brown (Eds.), Intelligent Tutoring Systems. New York: Academic. 157–183. 1982.

    Google Scholar 

  9. Chi, M. T. H., Bassok, M., Lewis, M., Reimann, P., Glaser, R. Self explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145–182. 1989.

    Article  Google Scholar 

  10. Glymour, C., Scheines, R., Spirtes, P., Kelly, K. Discovering Causal Structure. Orlando, FL: Academic Press. 1987.

    MATH  Google Scholar 

  11. Holland, J. H., Holyoak, K. J., Nisbett, R. E., Thagard, P. R. Induction: Process of Inference, Learning and Discovery. Cambridge, MA: MIT Press. 1986.

    Google Scholar 

  12. John, B. Contributions to engineering models of human-computer interaction. Doctoral dissertation, Department of Psychology, Carnegie Mellon University. 1988.

    Google Scholar 

  13. Kessler, C. M. Transfer of Programming Skills in Novice LISP Learners. Doctoral dissertation, Department of Psychology, Carnegie Mellon University. 1988.

    Google Scholar 

  14. Kowalski, B. VanLehn, K. Inducing subject models from protocol data. In V. Patel (Ed.), Proceedings of the Tenth Annual Conference of the Cognitive Science Society. Hillsdale, NJ: Erlbaum. 1988.

    Google Scholar 

  15. Kulkarni, D. Simon, H. A. The process of scientific discovery: the strategy of experimentation. Cognitive Science, 12, 139–175. 1988.

    Article  Google Scholar 

  16. Laird, J. E., Newell, A., Rosenbloom, P. S. Soar: an architecture for general intelligence. Artificial Intelligence, 33, 1–64. 1987.

    Article  Google Scholar 

  17. Langley, P., Simon, H. A., Bradshaw, G. L, Zytkow, J. M. Scientific Discovery: Computational Explorations of the Creative Process. Cambridge, MA: MIT Press. 1987.

    Google Scholar 

  18. Lindsay, R., Buchanan, B. H., Feigenbaum, E. A., Lederberg, J. DENDRAL. New York: McGraw-Hill. 1980.

    Google Scholar 

  19. Newell, A. Unified Theories of Cognition. Cambridge, MA: Harvard, (in press).

    Google Scholar 

  20. Newell, A. Simon, H. A. Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall. 1972.

    Google Scholar 

  21. Ohlsson, S. Truth versus appropriateness: relating declarative to procedural knowledge. In D. Klahr, P. Langley, R. Neches (Eds.), Production System Models of Learning and Development. Cambridge, MA: MIT Press. 1987.

    Google Scholar 

  22. Ohlsson, S. Langley, P. Identifying solution paths in cognitive diagnosis. (Technical Report CMU-RI-TR-84-7). Pittsburgh, PA: Robotic Institute, CMU. 1985.

    Google Scholar 

  23. Ohlsson, S. Langley, P. Psychological evaluation of path hypotheses in cognitive diagnosis. In H. Mandl A. Lesgold (Eds.), Learning Issues for Intelligent Tutoring Systems. New York: Springer Verlag. 1988.

    Google Scholar 

  24. Rosenbloom, P. Newell, A. Learning by chunking: A production system model of practice. In D. Klahr, P. Langley, R. Neches (Eds.), Production System Models of Learning and Development. Cambridge, MA: MIT Press. 1987.

    Google Scholar 

  25. Shavlik, J. W. Learning classical physics. In T. M. Mitchell, J. G. Carbonell, R. S. Michalski (Eds.), Machine Learning: A Guide to Current Research. Higham, MA: Kluwer. 1986.

    Google Scholar 

  26. Siegler, R. S. Strategy choices in subtraction. In J. Sloboda D. Rogers (Eds.), Cognitive Processes in Mathematics. Oxford, UK: Oxford University Press. 1987.

    Google Scholar 

  27. Siegler, R. S. Strategy choice procedures and the development of multiplication skill. Journal of Experimental Psychology: General, 117, 258–275. 1988.

    Article  Google Scholar 

  28. Siegler, R. S. Shrager, J. Strategy choices in addition: How do children know what to do? In C. Sophian (Ed.), Origins of Cognitive Skill. Hillsdale, NJ: Erlbaum. 1984.

    Google Scholar 

  29. Singley, M. K. Anderson, J. R. The transfer of text-editing skill. International Journal of Man-Machine Studies, 22, 403–423. 1985.

    Article  Google Scholar 

  30. Singley, M. K. Anderson, J. R. A keystroke analysis of learning and transfer in text editing. Human-Computer Interaction. 1988.

    Google Scholar 

  31. Valiant, L. G. A theory of the learnable. Communications of the ACM, 27 (11), 1134–1142. 1984.

    Article  MATH  Google Scholar 

  32. VanLehn, K. Felicity conditions for human skill acquisition: Validating an AI-based theory (Technical Report CIS-21). Xerox Palo Alto Research Center. Out of print, but available from University Microfilms, 300 North Zeeb Road, Ann Arbor, MI 49106. 1983a.

    Google Scholar 

  33. VanLehn, K. Human skill acquisition: Theory, model and psychological validation. In M. R. Genesereth (Ed.), Proceedings of AAAI-83. Los Altos, CA: Morgan Kaufmann. 1983b.

    Google Scholar 

  34. VanLehn, K. Learning one subprocedure per lesson. Artificial Intelligence, 31(1), 1–40. Reprinted in Shavlik, J. W. Dietterich, T. G. (Eds.). Readings in Machine Learning. Palo Alto, CA: Morgan Kaufmann. 1987.

    Google Scholar 

  35. VanLehn, K. Toward a theory of impasse-driven learning. In H. Mandl A. Lesgold (Eds.), Learning Issues for Intelligent Tutoring Systems. New York: Springer Verlag. 1988.

    Google Scholar 

  36. VanLehn, K. Mind Bugs: The origins of procedural misconceptions. Cambridge, MA: MIT Press. 1990.

    Google Scholar 

  37. VanLehn, K. Felicity conditions for cognitive skill acquisition: Tutorial instruction does not need them. Cognition and Instruction. Currently available as technical report PCG-17, Department of Psychology, Carnegie Mellon University.(submitted).

    Google Scholar 

  38. VanLehn, K. Ball, W. Teton: An architecture for analysis of protocol data. In K. VanLehn (Ed.), Architectures for Intelligence. Hillsdale, NJ: Erlbaum. (in press).

    Google Scholar 

  39. VanLehn, K. Garlick, S. Cirrus: An automated protocol analysis tool. In P. Langley (Ed.), Proceedings of the Fourth Machine Leaning Workshop. Los Altos, CA: Morgan Kaufmann. 1987.

    Google Scholar 

  40. VanLehn, K., Ball, W., Kowalski, B. Non-LIFO execution of cognitive procedures. Cognitive Science, 13, 415–465. 1989.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

VanLehn, K. (1992). A Workbench for Discovering Task Specific Theories of Learning. In: Scanlon, E., O’Shea, T. (eds) New Directions in Educational Technology. NATO ASI Series, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77750-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77750-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77752-3

  • Online ISBN: 978-3-642-77750-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics