Advertisement

Resource Bounded Kolmogorov Complexity and Statistical Tests

  • Luc Longpré
Part of the EATCS Monographs on Theoretical Computer Science book series (EATCS)

Abstract

This paper investigates the statistical properties of resource bounded Kolmogorov-random strings. In an attempt to define random sequences, Martin-Löf has shown that the Kolmogorov-random strings (strings with no short description) possess all the statistical properties of random strings. We look at the statistical properties of resource bounded Kolmogorov-random strings. For space bounds, we show that there is a direct relation between the space bound on the Kolmogorov randomness classes and the space required to check a statistical property. The problem is still open for time bounds. We then relate this notion of random sequences to Yao’s definition of secure pseudo random number generators.

Keywords

Number Generator Random Sequence Universal Test Random Number Generator Turing Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AV79]
    D. Angluin and L.G. Valiant. Fast probabilistic algorithms for hamiltonian paths and matchings. Comp. Syst. Sci., 18:155–193, 1979.MathSciNetMATHCrossRefGoogle Scholar
  2. [BM84]
    M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits. SIAM J. Comput., 13:850–864, 1984.MathSciNetMATHCrossRefGoogle Scholar
  3. [Cha69]
    G. Chaitin. On the length of programs for computing finite binary sequences: statistical considerations. J. Assoc. Comput. Mach., 16:145–159, 1969.MathSciNetMATHGoogle Scholar
  4. [Che52]
    H. Chernoff. A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Annals of Math. Statistics, 23, 1952.Google Scholar
  5. [Chu40]
    A. Church. On the concept of a random sequence. Bulletin of the American Mathematical Society, 46:130–135,1940.MathSciNetCrossRefGoogle Scholar
  6. [Fin73]
    T. Fine. Theories of Probability. Academic Press, 111 Fifth Avenue, New York, NY 10003, 1973.MATHGoogle Scholar
  7. [Har83]
    J. Hartmanis. Generalized Kolmogorov complexity and the structure of feasible computations. In Proc. 24th IEEE Symposium on Foundations of Computer Science, pages 439–445, 1983.Google Scholar
  8. [Knu69]
    D. Knuth. SemiNumerical Algorithms, volume 2 of The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969.Google Scholar
  9. [K086]
    K. Ko. On the notion of infinite pseudorandom sequences.Theoretical Computer Science, 48:9–13, 1986.MathSciNetMATHCrossRefGoogle Scholar
  10. [Kol33]
    A. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer Verlag, Berlin, 1933.Google Scholar
  11. [Kol56]
    A. Kolmogorov. Foundations of the Theory of Probability. Chelsea, Bronx, New York, 1956. Translation by N. Morrison.Google Scholar
  12. [Kol63]
    A. Kolmogorov. On tables of random numbers. Sankhyi, The Indian Journal of Statistics, Series A, 25:369–376, 1963.Google Scholar
  13. [Kol65]
    A. Kolmogorov. Three approaches for defining the concept of information quantity. Prob. Inform. Trans., 1:1–7, 1965.Google Scholar
  14. [Lon86]
    L. Longpre. Resource bounded Kolmogorov complexity, a link between computational complexity and information theory. PhD thesis, Cornell University, 1986. Technical Report TR86–776.Google Scholar
  15. [LV88]
    M. Li and P.M.B. Vitanyi. Two decades of applied kolmogorov complexity. In Proc. Structure in Complexity Theory third annual conference, pages 80–101, 1988.CrossRefGoogle Scholar
  16. [LV91]
    M. Li and P.M.B. Vitânyi. An introduction to kolmogorov complexity and its applications, part 1: Theory. Technical Report Note CS-R9101, Centrum voor Wiskunde en Informatica, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands, 1991. Preliminary version of a textbook.Google Scholar
  17. [ML66]
    P. Martin-Löf. The definition of random sequences. Information and Control, 9:602–619, 1966.MathSciNetCrossRefGoogle Scholar
  18. [Sip83]
    M. Sipser. A complexity theoretic approach to randomness. In Proc. 15th ACM Symposium on Theory of Computing, pages 330–335, 1983.Google Scholar
  19. [Sol64]
    R. Solomonoff. A formal theory of inductive inference, part 1 and part 2. Information and Control, 7:1–22, 224–254, 1964.MathSciNetMATHCrossRefGoogle Scholar
  20. [Vil39]
    J. Ville. Etude critique de la notion de collectif. Gauthier-Villars, Paris, 1939.Google Scholar
  21. [vL87]
    M. van Lambalgen. Von Mises’ definition of random sequences reconsidered. Journal of Symbolic Logic, 52(3):725–755, Sept. 1987.MathSciNetMATHCrossRefGoogle Scholar
  22. [vMl9]
    R. von Mises. Grundlagen der Wahrscheinlichkeitsrechnung. Mathemat. Zeitsch., 5:52–99, 1919.CrossRefGoogle Scholar
  23. [vM39]
    R. von Mises. Probability, Statistics and Truth. MacMillan, New York, 1939. Reprint: Dover, 1981.MATHGoogle Scholar
  24. [vMG64]
    R. von Mises and H. Geiringer. The Mathematical Theory of Probability and Statistics. Academic Press, New York, 1964.Google Scholar
  25. [VV83]
    U. Vazirani and V. Vazirani. Trapdoor pseudo-random number generators with applications to protocol design. In Proc. 24th IEEE Symp. on Foundations of Computer Science, pages 23–30, 1983.Google Scholar
  26. [Wal38]
    A. Wald. Die Widerspruchsfreiheit des Kollektivbegriffs in der Wahrscheinlichkeitsrechnung. Ergebnisse eines Mathematischen Kolloquiums, 8:38–72, 1938.Google Scholar
  27. [Wil83]
    R. Wilber. Randomness and the density of hard problems. In Proc. 24th IEEE Symp. on Foundations of Computer Science, pages 335–342, 1983.Google Scholar
  28. [Yao82]
    A. Yao. Theory and applications of trapdoor functions. InProc. 23rd IEEE Symposium on Foundations of Computer Science, pages 80–91, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Luc Longpré
    • 1
  1. 1.College of Computer ScienceNortheastern UniversityBostonUSA

Personalised recommendations