Skip to main content

Resource Bounded Kolmogorov Complexity and Statistical Tests

  • Chapter
Kolmogorov Complexity and Computational Complexity

Part of the book series: EATCS Monographs on Theoretical Computer Science ((EATCS))

Abstract

This paper investigates the statistical properties of resource bounded Kolmogorov-random strings. In an attempt to define random sequences, Martin-Löf has shown that the Kolmogorov-random strings (strings with no short description) possess all the statistical properties of random strings. We look at the statistical properties of resource bounded Kolmogorov-random strings. For space bounds, we show that there is a direct relation between the space bound on the Kolmogorov randomness classes and the space required to check a statistical property. The problem is still open for time bounds. We then relate this notion of random sequences to Yao’s definition of secure pseudo random number generators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Angluin and L.G. Valiant. Fast probabilistic algorithms for hamiltonian paths and matchings. Comp. Syst. Sci., 18:155–193, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-random bits. SIAM J. Comput., 13:850–864, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Chaitin. On the length of programs for computing finite binary sequences: statistical considerations. J. Assoc. Comput. Mach., 16:145–159, 1969.

    MathSciNet  MATH  Google Scholar 

  4. H. Chernoff. A measure of asymptotic efficiency for tests of hypothesis based on the sum of observations. Annals of Math. Statistics, 23, 1952.

    Google Scholar 

  5. A. Church. On the concept of a random sequence. Bulletin of the American Mathematical Society, 46:130–135,1940.

    Article  MathSciNet  Google Scholar 

  6. T. Fine. Theories of Probability. Academic Press, 111 Fifth Avenue, New York, NY 10003, 1973.

    MATH  Google Scholar 

  7. J. Hartmanis. Generalized Kolmogorov complexity and the structure of feasible computations. In Proc. 24th IEEE Symposium on Foundations of Computer Science, pages 439–445, 1983.

    Google Scholar 

  8. D. Knuth. SemiNumerical Algorithms, volume 2 of The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969.

    Google Scholar 

  9. K. Ko. On the notion of infinite pseudorandom sequences.Theoretical Computer Science, 48:9–13, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer Verlag, Berlin, 1933.

    Google Scholar 

  11. A. Kolmogorov. Foundations of the Theory of Probability. Chelsea, Bronx, New York, 1956. Translation by N. Morrison.

    Google Scholar 

  12. A. Kolmogorov. On tables of random numbers. Sankhyi, The Indian Journal of Statistics, Series A, 25:369–376, 1963.

    Google Scholar 

  13. A. Kolmogorov. Three approaches for defining the concept of information quantity. Prob. Inform. Trans., 1:1–7, 1965.

    Google Scholar 

  14. L. Longpre. Resource bounded Kolmogorov complexity, a link between computational complexity and information theory. PhD thesis, Cornell University, 1986. Technical Report TR86–776.

    Google Scholar 

  15. M. Li and P.M.B. Vitanyi. Two decades of applied kolmogorov complexity. In Proc. Structure in Complexity Theory third annual conference, pages 80–101, 1988.

    Chapter  Google Scholar 

  16. M. Li and P.M.B. Vitânyi. An introduction to kolmogorov complexity and its applications, part 1: Theory. Technical Report Note CS-R9101, Centrum voor Wiskunde en Informatica, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands, 1991. Preliminary version of a textbook.

    Google Scholar 

  17. P. Martin-Löf. The definition of random sequences. Information and Control, 9:602–619, 1966.

    Article  MathSciNet  Google Scholar 

  18. M. Sipser. A complexity theoretic approach to randomness. In Proc. 15th ACM Symposium on Theory of Computing, pages 330–335, 1983.

    Google Scholar 

  19. R. Solomonoff. A formal theory of inductive inference, part 1 and part 2. Information and Control, 7:1–22, 224–254, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. Ville. Etude critique de la notion de collectif. Gauthier-Villars, Paris, 1939.

    Google Scholar 

  21. M. van Lambalgen. Von Mises’ definition of random sequences reconsidered. Journal of Symbolic Logic, 52(3):725–755, Sept. 1987.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. von Mises. Grundlagen der Wahrscheinlichkeitsrechnung. Mathemat. Zeitsch., 5:52–99, 1919.

    Article  Google Scholar 

  23. R. von Mises. Probability, Statistics and Truth. MacMillan, New York, 1939. Reprint: Dover, 1981.

    MATH  Google Scholar 

  24. R. von Mises and H. Geiringer. The Mathematical Theory of Probability and Statistics. Academic Press, New York, 1964.

    Google Scholar 

  25. U. Vazirani and V. Vazirani. Trapdoor pseudo-random number generators with applications to protocol design. In Proc. 24th IEEE Symp. on Foundations of Computer Science, pages 23–30, 1983.

    Google Scholar 

  26. A. Wald. Die Widerspruchsfreiheit des Kollektivbegriffs in der Wahrscheinlichkeitsrechnung. Ergebnisse eines Mathematischen Kolloquiums, 8:38–72, 1938.

    Google Scholar 

  27. R. Wilber. Randomness and the density of hard problems. In Proc. 24th IEEE Symp. on Foundations of Computer Science, pages 335–342, 1983.

    Google Scholar 

  28. A. Yao. Theory and applications of trapdoor functions. InProc. 23rd IEEE Symposium on Foundations of Computer Science, pages 80–91, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Longpré, L. (1992). Resource Bounded Kolmogorov Complexity and Statistical Tests. In: Watanabe, O. (eds) Kolmogorov Complexity and Computational Complexity. EATCS Monographs on Theoretical Computer Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77735-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77735-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77737-0

  • Online ISBN: 978-3-642-77735-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics