Skip to main content

On the Origin of Streaks in Turbulent Shear Flows

  • Conference paper
Book cover Turbulent Shear Flows 8

Abstract

It is shown that the ideas of selective amplification and direct resonance, based on linear theory, do not provide a selection mechanism for the well-defined streak spacing of about 100 wall units (referred to as 100+ hereafter) observed in wall-bounded turbulent shear flows. For the direct resonance theory (Benney & Gustaysson, 1981; fang et al., 1986), it is shown that the streaks are created by the nonlinear self-interaction of the vertical velocity rather than of the directly forced vertical vorticity. It is then proposed that the selection mechanism must be inherently nonlinear and correspond to a self-sustaining process. The streak formation is only one stage of the complete mechanism and cannot be isolated from the rest of the process. The 100+ value should be considered as a critical Reynolds number for that self-sustaining mechanism. For the case of plane Poiseuille flow the 100+ criterion corresponds to a critical Reynolds number of 1250, based on the centerline velocity and the channel half-width, which is close to the usually quoted value of about 1000. In plane Couette flow, it corresponds to a critical Reynolds number of 625, based on the half velocity difference and the half-width.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benney, D.J. (1961): “A non-linear theory for oscillations in a parallel flow”, J. Fluid Mech. Vol. 10, pp. 209–236.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Benney, D.J. & Chow, K. (1989): “A mean flow first harmonic theory for hydrodynamic instabilities”, Studies in Applied Math. Vol 80, pp. 37–74.

    MathSciNet  MATH  Google Scholar 

  • Benney, D.J. & Gustaysson, L.H. (1981): “ A New Mechanism for Linear and Nonlinear Hydrodynamic Stability”, Studies in Appl. Math. Vol. 64, pp. 185–209.

    MATH  Google Scholar 

  • Gustaysson, L. H. (1981): “Resonant growth of three dimensional disturbances in plane Poiseuille flow”, J. Fluid Mech. Vol. 112, pp. 253–264.

    Article  ADS  Google Scholar 

  • Gustaysson, L. H. (1991): “Energy growth of three dimensional disturbances in plane Poiseuille flow”, J. Fluid Mech. Vol. 224, pp. 241–260.

    Article  ADS  Google Scholar 

  • Henningsson, D. S. (1990): “An eigenfunction expansion of localized disturbances”, Poster presented at 3rd European Conference, Stockholm.

    Google Scholar 

  • Jang, P.S., Benney, D.J. & Gran, R.L. (1986): “On the origin of streamwise vortices in a turbulent boundary layer”, J. Fluid Mech. Vol. 169, pp. 109–123.

    Article  ADS  MATH  Google Scholar 

  • Jimenez, J. & Moin, P. (1991): “The minimum flow unit in near-wall turbulence”, J. Fluid Mech. Vol. 225, pp. 213–240.

    Article  ADS  MATH  Google Scholar 

  • Kim, J., Moin, P. & Moser, R.D. (1987): “Turbulence statistics in fully developed channel flow at low Reynolds number”, J. Fluid Mech. Vol. 162, pp. 339–363.

    Article  ADS  Google Scholar 

  • Kim, H.T., Kline, S.J. & Reynolds, W.C. (1971): “The production of turbulence near a smooth wall in a turbulent boundary layer”, J. Fluid Mech. Vol. 50, pp. 133–160.

    Article  ADS  Google Scholar 

  • Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler, P. (1967): “The structure of turbulent boundary layers”, J. Fluid Mech. Vol. 30, pp. 741–773.

    Article  ADS  Google Scholar 

  • Lee, M.J., Kim, J. & Moin, P. (1990): “Structure of turbulence at high shear rate”, J. Fluid Mech. Vol. 216, pp. 561–583.

    Article  ADS  Google Scholar 

  • Lee, M.J. & Kim, J. (1991): “The structure of turbulence in a simulated plane Couette flow”, Proceedings of Eighth Symposium on Turbulent Shear Flows, Munich.

    Google Scholar 

  • Lin, C.C. & Benney, D.J. (1962): “On the instability of shear flows”, AMS, Proc. Symp. Appl. Math. Vol. 13, pp. 1–30.

    MathSciNet  Google Scholar 

  • Smith, C.R. & Metzler, S.P. (1983): “The characteristics of low-speed streaks in the near wall region of a turbulent boundary layer”, J. Fluid Mech. Vol. 129, pp. 27–54.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Waleffe, F., Kim, J., Hamilton, J.M. (1993). On the Origin of Streaks in Turbulent Shear Flows. In: Durst, F., Friedrich, R., Launder, B.E., Schmidt, F.W., Schumann, U., Whitelaw, J.H. (eds) Turbulent Shear Flows 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77674-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77674-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77676-2

  • Online ISBN: 978-3-642-77674-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics