Advertisement

Effects of Solid Body Rotation on the Transport of Turbulence

  • L. Shao
  • M. Michard
  • J. P. Bertoglio
Conference paper

Abstract

The mechanism of turbulence transport is studied using a Large Eddy Simulation of a shearless turbulence mixing layer, subjected to solid body rotation. The behaviour of both transport by triple velocity correlations and transport by pressure-velocity correlations is found to be completely different from what was found without rotation. A modified one-point model, that accounts for the effects of rotation, is proposed for the transport term by triple correlations.

Keywords

Turbulent Kinetic Energy Large Eddy Simulation Reynolds Stress Turbulence Transport Reynolds Stress Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aupoix B., Cousteix J. and Liandrat J., 1983; Effects of Rotation on Isotropic Turbulence, Fourth ht. Symp. Turb. Shear Flows, Karlsruhe, Sept. 83.Google Scholar
  2. Bardina J., Ferziger J.H. and Reynolds W.C., 1983; Improved Turbulence Models based on L. E. S. of Homogeneous, Incompressible Turbulent Flows, Report T.F. 19, Stanford Univ., May 83.Google Scholar
  3. Bertoglio J.P., 1982; Homogeneous Turbulent Field within a Rotating Frame, A.I.A.A. Journ., Vol. 20, no 9.Google Scholar
  4. Cambon C., Teissedre C. and Jeandel D., 1985; Etude d’effets couplés de Déformation et de Rotation sur une Turbulence Homogène, Journ. Méc. Théor. Appl., 4.Google Scholar
  5. Cambon C., Jacquin L. and Lubrano J.L., 1991; Towards a New Reynolds Stress Model for Rotating Turbulent Flows, submitted to Physics of Fluids.Google Scholar
  6. Chollet J.P. and Lesieur M., 1981; Parameterization of Small Scales of Three-Dimensional Isotropic Turbulence utilizing Spectral Closures, Journ. of Atm. Sci., Vol. 38.Google Scholar
  7. Hanjalic and Launder B.E., 1972 A Reynolds stress model of turbulence and its application to thin shear flows, J.F.M. 52 pp 609–638.CrossRefGoogle Scholar
  8. Hopfinger E.J., Browand F.K. and Gagne Y, 1982; Turbulence and Waves in a Rotating Tank. J. F. M.125.Google Scholar
  9. Jacquin L., Leuchter O., Cambon C. & Mathieu J., Homogeneous Turbulence in the Presence of Rotation, J.F.M. 220, pp 1–52, 1990MATHCrossRefGoogle Scholar
  10. Launder, Reece and Rodi, 1975 Progress in the developpement of Reynolds stress closure J.F.M. 68.Google Scholar
  11. Lubrano J.L. and Cambon, C. 1991, Personal communication.Google Scholar
  12. Lumley J., 1978; Computational Modeling of Turbulent Flow, Adv. Appl. Mech., 18, pp. 123–176.MathSciNetMATHGoogle Scholar
  13. Malkus, 1990; Europ. Turb. Conf., Stockholm, July 90.Google Scholar
  14. Riley, 1990, Seminar on Stratified Turbulence, Ecole Centrale de Lyon, Sept. 90.Google Scholar
  15. Shao L., Bertoglio J.P. and Michard M., 1990; Large Eddy Simulation of the Interaction between Two Distinct Turbulent Velocity Scales, Europ. Turb. Conf., Stockholm, July 90, to appear in Springer-Verlag.Google Scholar
  16. Shao L., Le Penven L. and Bertoglio J.P., 1990; Study of the Modelling of the Transport Terms in One-point Closures using L. E. S. of Turbulence, Int. Symp. on Eng. Turb. Model. and Measur., Dubrovnik, Sept. 90.Google Scholar
  17. Shao L. et Bertoglio J.P., Effet de l’Intermittence sur les Termes de Transport Turbulent 10e Cong. Méca. Fr. Sept.1991Google Scholar
  18. Speziale C.G., Gatski T.B. and Mhuiris N.M.G., 1990; A Critical Comparison of Turbulence Models for Homogeneous Shear Flows in a Rotating Frame, Phys. Fluids, A2, 9, Sept. 90, pp. 1678–1684.Google Scholar
  19. Veeravalli and Warhaft, 1989 The shearless turbulence mixing layer J.F.M. 207, 191–229Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • L. Shao
    • 1
  • M. Michard
    • 1
  • J. P. Bertoglio
    • 1
  1. 1.Laboratoire de Mécanique des Fluides et d’AcoustiqueURA CNRS 263, Ecole Centrale de LyonEcullyFrance

Personalised recommendations