Advertisement

Effects of Adverse Pressure Gradients on Mean Flows and Turbulence Statistics in a Boundary Layer

  • Y. Nagano
  • M. Tagawa
  • T. Tsuji

Abstract

Measurements in boundary layers with ‘moderate’ to ‘strong’ adverse pressure gradients are presented and discussed. With increasing adverse pressure gradients, the velocity profile in \( {\overline U ^ + } \sim {y^ + }\) coordinates lies below the standard log law, thus indicating a reduction in the thickness of the sublayer. Correspondingly, the turbulence energy components as well as the Reynolds shear stress peak in the outer region of the boundary layer. Higher-order moments of velocity fluctuations are also seriously affected by the adverse pressure gradient. In strong adverse-pressure-gradient flows, the triple products of velocity have completely opposite signs to those in zero-pressure-gradient flows over most of the boundary layer.

Keywords

Boundary Layer Wall Shear Stress Turbulent Boundary Layer Friction Velocity Reynolds Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

Cp

wall static pressure coefficient, =\( \left( {\overline P - {{\overline P }_{ref}}} \right)/\left( {\rho {{\overline {\text{U}} }^2}_{{\text{ref}}}/2} \right) \)

H

shape factor, = δ * /θ

\( \overline P \)

mean pressure

P+

dimensionless pressure gradient parameter, = \( v\left( {d\overline {P/dx} } \right)/\rho u_T^3 \)

Rθ

Reynolds number based on momentum thickness, = \( {\bar U_e}\theta /v \)

S(x)

skewness factor of x, =\( {\overline X ^3}/{\left( {\overline {{X^2}} } \right)^{3/2}} \)

\( \overline U \)

mean velocity in x direction

\( \overline {{U_e}} \)

free stream velocity

uτ

friction velocity, = \( \sqrt {{T_w}/\rho } \)

u, v, w

fluctuating velocity components in x, y and z directions

X

distance from tripping plate

x, y, z

streamwise, wall-normal and lateral coordinates

y+

dimensionless distance from wall, = u τ y/v

β

Clauser pressure gradient parameter, = \( \left( {{\delta ^*}/{\tau _w}} \right)d\overline P /dx \)

δ99

boundary layer thickness

δ*, θ

displacement and momentum thicknesses

v

kinematic viscosity

ρ

density

τw

wall shear stress

()

time mean value

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barlow, R. S., Johnston, J. P. (1988): Structure of a turbulent boundary layer on a concave surface. J. Fluid Mech. 191, 137–176ADSCrossRefGoogle Scholar
  2. Bhatia, J. C., Durst, F., Jovanovic, J. (1982): Corrections of hot-wire anemometer measurements near walls. J. Fluid Mech. 122, 411–431ADSCrossRefGoogle Scholar
  3. Blackwelder, R. F., Kovasznay, L. S. G. (1972): Large-scale motion of a turbulent boundary layer during relaminarization. J. Fluid Mech. 53, 61–83ADSCrossRefGoogle Scholar
  4. Blackwelder, R. F., Haritonidis, J. H. (1983): Scaling of the bursting frequency in turbulent boundary layers. J. Fluid Mech. 132, 87–103ADSCrossRefGoogle Scholar
  5. Bradshaw, P. (1965): The effect of wind-tunnel screens on nominally two-dimensional boundary layers. J. Fluid Mech. 22, 679–687ADSCrossRefGoogle Scholar
  6. Bradshaw, P. (1967): The turbulence structure of equilibrium boundary layers. J. Fluid Mech. 29, 625–645ADSCrossRefGoogle Scholar
  7. Clauser, F. H. (1954): Turbulent boundary layers in adverse pressure gradients. J. Aeronautical Sciences 21, 91–108Google Scholar
  8. Cutler, A. D., Johnston, J. P. (1989): The relaxation of a turbulent boundary layer in an adverse pressure gradient. J. Fluid Mech. 200, 367–387ADSCrossRefGoogle Scholar
  9. Hebbar, K. S., Melnik, W. L. (1978): Wall region of a relaxing three-dimensional incompressible turbulent boundary layer. J. Fluid Mech. 85, 33–56ADSCrossRefGoogle Scholar
  10. Huffman, G. D., Bradshaw, P. (1972): A note on von Kazmân’s constant in low Reynolds number turbulent flows. J. Fluid Mech. 53, 45–60ADSCrossRefGoogle Scholar
  11. Janke, G. (1987): “Hot wire in wall proximity,” in Advances in Turbulence (G. Comte-Bellot, J. Mathieu, eds) (Springer, Berlin, Heidelberg, New York), pp. 488–498Google Scholar
  12. Kays, W. M. (1971): Heat transfer to the transpired boundary layer. ASME Paper No. 71-HT-44 Google Scholar
  13. Kline, S. J., Reynolds, W. C., Schraub, F. A., Runstadler, P. W. (1967): The structure of turbulent boundary layers. J. Fluid Mech. 30, 741–773ADSCrossRefGoogle Scholar
  14. Launder, B. E. (1986): Low-Reynolds-number turbulence near walls. UMIST Dept. of Mech. Eng., TFDl86/4 Google Scholar
  15. Lian, Q. X. (1990): A visual study of the coherent structure of the turbulent boundary layer in flow with adverse pressure gradient. J. Fluid Mech. 215, 101–124ADSCrossRefGoogle Scholar
  16. Ligrani, P. M., Bradshaw, P. (1987): Subminiature hot-wire sensors: development and use. J. Physics E — Scientific Instruments 20, 323–332ADSCrossRefGoogle Scholar
  17. Loehrke, R. I., Nagib, H. M. (1976): Control of free-stream turbulence by means of honeycombs: a balance between suppression and generation. Trans. ASME, J. Fluids Engng. 98, 342–353CrossRefGoogle Scholar
  18. Lumley, J. L. (1964): Passage of a turbulent stream through honeycomb of large length-to-diameter ratio. Trans. ASME, J. Basic Engng. 86, 218–220CrossRefGoogle Scholar
  19. McEligot, D. M. (1984): Measurement of wall shear stress in accelerating turbulent flows. Max-Planck-Institut für Strömungsforschung (Göttingen) Bericht 109Google Scholar
  20. Morel, T. (1977): Design of two-dimensional wind tunnel contractions. Trans. ASME, J. Fluids Engng. 99, 371–378CrossRefGoogle Scholar
  21. Nagano, Y., Tagawa, M. (1988): Statistical characteristics of wall turbulence with a passive scalar. J. Fluid Mech. 196, 157–185ADSMATHCrossRefGoogle Scholar
  22. Nagano, Y., Tagawa, M. (1990a): A structural turbulence model for triple products of velocity and scalar. J. Fluid Mech. 215, 639–657ADSCrossRefGoogle Scholar
  23. Nagano, Y., Tagawa, M. (1990b): An improved k — ε model for boundary layer flows. Trans. ASME, J. Fluids Engng. 112, 33–39ADSCrossRefGoogle Scholar
  24. Nagano, Y., Tagawa, M. (1991): “Turbulence model for triple velocity and scalar correlations,” in Turbulent Shear Flows 7 (F. Durst, B. E. Launder, W. C. Reynolds, F. W. Schmidt, J. H. Whitelaw, eds) (Springer, Berlin, Heidelberg, New York), pp. 47–62CrossRefGoogle Scholar
  25. Oka, S., Kostic, Z (1972): Influence of wall proximity on hot-wire velocity measurements. DISA Information, No. 13, pp. 29–33Google Scholar
  26. Robinson, S. K., Kline, S. J., Spalart, P. R. (1990): “Quasi-coherent structures in the turbulent boundary layer: part II: verification and new information from a numerically simulated flat-plate layer,” in Near-Wall Turbulence (S. J. Kline, N. H. Afgan, eds) (Hemisphere ), pp. 218–247Google Scholar
  27. Samuel, A. E., Joubert, P. N. (1974): A boundary layer developing in an increasingly adverse pressure gradient. J. Fluid Mech. 66, 481–505ADSCrossRefGoogle Scholar
  28. Schubauer, G. B., Spangenberg, W. G., Klebanoff, P. S. (1950): Aerodynamic characteristics of damping screens. NACA Technical Note 2001Google Scholar
  29. Spalart, P. S. (1986): Numerical study of sink-flow boundary layers. J. Fluid Mech. 172, 307–328ADSMATHCrossRefGoogle Scholar
  30. Spalart, P. S. (1988): Direct simulation of a turbulent boundary layer up to Rθ = 1410. J. Fluid Mech. 187, pp. 61–98ADSMATHCrossRefGoogle Scholar
  31. Uberoi, M. S. (1956): Effect of wind-tunnel contraction on free-stream turbulence. J. Aeronautical Sciences 23, 754–764Google Scholar
  32. Verriopoulos, C. A. (1983): Effects of convex surface curvature on heat transfer in turbulent flow. Ph.D. Thesis, Imperial College.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Y. Nagano
    • 1
  • M. Tagawa
    • 1
  • T. Tsuji
    • 1
  1. 1.Department of Mechanical EngineeringNagoya Institute of TechnologyShowa-ku, Nagoya 466Japan

Personalised recommendations