Skip to main content

Compressible Homogeneous Shear: Simulation and Modeling

  • Conference paper
Turbulent Shear Flows 8

Abstract

The present study investigates compressibility effects on turbulence by direct numerical simulation of homogeneous shear flow. A primary observation is that the growth of the turbulent kinetic energy decreases with increasing turbulent Mach number. The sinks provided by compressible dissipation and the pressure-dilatation, along with reduced Reynolds shear stress, are shown to contribute to the reduced growth of kinetic energy. Models are proposed for these dilatational terms and verified by direct comparison with the simulations. The differences between the incompressible and compressible fields are brought out by the examination of spectra, statistical moments, and structure of the rate of strain tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashurst, W.T., Chen, J.-Y.,and Rogers, M.M.: Pressure Gradient Alignment with Strain Rate and Scalar Gradient in Simulated Navier-Stokes Turbulence. Phys. Fluids A, 30, (1987a) 3293–3294.

    Article  ADS  Google Scholar 

  • Ashurst, W.T., Kerstein, A.R., Kerr, R.M., and Gibson, C.H.: Alignment of Vorticity and Scalar Gradient with Strain Rate in Simulated Navier-Stokes Turbulence. Phys. Fluids 30, (1987b) 2343–2353.

    Article  ADS  Google Scholar 

  • Blaisdell, G.A., Mansour, N.N, and Reynolds, W.C.: Numerical simulation of Compressible Homogeneous Turbulence, Stanford University Report No. TF-50 (1991).

    Google Scholar 

  • Chen, J.H., Chong, M.S., Soria, J., Sondergaard, R., Perry, A.E., Rogers, M., Moser, R., and Cantwell, B.J.: A study of the topology of dissipating motions in direct numerical simulations of time-developing compressible and incompressible mixing layers. CTR, Proceedings of Summer Program (1990).

    Google Scholar 

  • Coleman, G.N., and Mansour, N.N.: Modeling the rapid spherical compression of isotropic turbulence. Phys. Fluids A, 3 (1991) 2255–2259.

    Article  ADS  MATH  Google Scholar 

  • Erlebacher, G., Hussaini, M.Y., Kreiss, H.O., and Sarkar, S.: The Analysis and Simulation of Compressible Turbulence. Theoret. Comput. Fluid Dynamics, 2 (1990) 73–95.

    ADS  MATH  Google Scholar 

  • Erlebacher, G., Sarkar, S., Hussaini, M. Y.: Structure of Compressible Turbulence in Homogeneous Shear Flow. ICASE Report (in preparation).

    Google Scholar 

  • Feiereisen, W.J., Shirani, E., Ferziger, J.H., and Reynolds, W.C.: Direct Simulation of Homogeneous Turbulent Shear Flows on the Mac IV Computer. In Turbulent Shear Flows 3 (1982) 309–319. Springer-Verlag, Berlin.

    ADS  Google Scholar 

  • Kida, S. and Oxszag, S.A.: Energy and Spectral Dynamics in Forced Compressible Turbulence. J. Sci. Comp., 5, (1990) 85.

    Article  MATH  Google Scholar 

  • Lee, M.J., Kim, J., and Moin, P.: Structure of turbulence at high shear rate. J. Fluid Mech., 216, (1990) 561–583.

    Article  ADS  Google Scholar 

  • Lee, S., Lele, S.K., and Moin, P.: Eddy-shocklets in Decaying Compressible Turbulence. CTR Manuscript 117 (1990).

    Google Scholar 

  • Passot, T.: Simulations numeriques d’ecoulements coiupiessibles homogenes en regime turbulent: application aux nuages moleculaires. Ph. D. Thesis, University of Paris (1987).

    Google Scholar 

  • Rogallo, R.S.: Numerical Experiments in Homogeneous Turbulence. NASA TM 81315 (1981).

    Google Scholar 

  • Rogers, M.M., and Moin, P.: The Structure of the Vorticity Field in Homogeneous Turbulent Flows. J. Fluid Mech., 176 (1987) 33–66.

    Article  ADS  Google Scholar 

  • Sarkar, S., Erlebacher, G., Hussaini, M.Y., and Kreiss, H.O.: The Analysis and Modeling of Dilatational Terms in Compressible Turbulence. J. Fluid Mech, 227 (1989) 473–493.

    Article  ADS  Google Scholar 

  • Sarkar, S., Erlebacher, G., and Hussaini, M.Y.: Direct Simulation of Compressible Turbulence in a Shear Flow. Theor. Comput. Fluid Dyn., 2 (1991) 291–305.

    Article  MATH  Google Scholar 

  • Sarkar, S.: Modeling the Pressure-dilatation Correlation. ICASE Report 91–42 (1991).

    Google Scholar 

  • Vieillefosse, P.: Internal Motion of a Small Element of Fluid in an Inviscid Flow. Physica 125 A,(1984) 150–162.

    Article  MathSciNet  MATH  Google Scholar 

  • Zang, T.A., Dahlburg, R.B., and Dahlburg, J.P.: Direct and Large-eddy Simulations of Compressible, Isotropic, Navier-Stokes Turbulence. Plays. Fluids A (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sarkar, S., Erlebacher, G., Hussaini, M.Y. (1993). Compressible Homogeneous Shear: Simulation and Modeling. In: Durst, F., Friedrich, R., Launder, B.E., Schmidt, F.W., Schumann, U., Whitelaw, J.H. (eds) Turbulent Shear Flows 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77674-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77674-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77676-2

  • Online ISBN: 978-3-642-77674-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics