Skip to main content

Second-Moment Modelling of Recirculating Flow with a Non-Orthogonal Collocated Finite-Volume Algorithm

  • Conference paper

Abstract

The incorporation of Reynolds-stress closure into a non-orthogonal, collocated finite-volume framework in which the discretisation of convection is non-diffusive, presents a number of algorithmic problems not encountered in more traditional schemes employing staggered, rectilinear volume arrangements. Three issues requiring special consideration are: the tensorially correct incorporation of the wall-related pressure-strain terms which are important fragments in the stress closure, boundary conditions at curved walls, and iterative stability. The first issue, in particular, arises because the wall-related terms are tied to the orientation of the wall relative to the directions of the Reynolds stresses. The paper reports practices which address all three problem areas. Four complex applications are presented, among them the flow through a sinusoidal pipe constriction and shock-induced separation over a channel bump.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Daly, B.J. & Harlow, F.H., (1970), Phys. Fluids, 13, p. 2364.

    Article  Google Scholar 

  • Delery, J., (1983), J. Aiaa, Vol. 21, p. 180.

    Article  ADS  Google Scholar 

  • Deshpande, M.D. & Giddens, D.P., (1980), JFM, Vol. 97(1), p. 65.

    Article  ADS  Google Scholar 

  • Dimitriadis, K.P. & Leschziner, M.A., (1990), “Modelling shock/boundary layer interaction with a cell-vertex scheme and second-moment closure”., Proc. 12th Int. Conf. on Numerical Methods on Fluid Dynamics, Oxford, Lecture Notes in Physics (K.W. Morton, ed.), Springer Verlag, p. 371.

    Google Scholar 

  • Driver, D.M. & Seegmiller, H.L., (1982), “Features of a reattaching turbulent shear layer”, AIAA Paper 82–1029.

    Google Scholar 

  • Durst, F. & Schmitt, F., (1985), `Experimental studies of high Reynolds number backward-facing step flows“, Proc. 5th Symp. Turbulent Shear Flows, Cornell University, p. 5.19.

    ADS  Google Scholar 

  • Gaskell, P.H. & Lau, A.K.C., (1987), “An assessment of direct stress modelling for elliptic turbulent flows with the aid of a non-diffusive, boundedness-preserving, discretisation scheme”, Proc. 5th Int. Conf. on Numerical Methods in Laminar and Turbulent Flows, Montreal, Pineridge Press, Swansea, p. 351.

    Google Scholar 

  • Gibson, M.M. & Launder, B.E., (1978), JFM, Vol. 85, p. 491.

    ADS  Google Scholar 

  • Hafez, M., South, J. & Murman, E., (1979), J. AIAA, Vol. 17, p. 838.

    Article  ADS  MATH  Google Scholar 

  • Jones, W.P. & Launder, B.E., (1972), “The prediction of relaminarisation using a two-equation model of turbulence”, Int J. Heat and Mass transfer, 15, p. 301.

    Article  Google Scholar 

  • Jones, W.P, & Marquis, A.J., (1985), “Calculation of axisymmetric recirculating flows with second-order turbulence model”, Proc. 5th Symp. on Turbulent Shear Flows, Cornell University, p. 20.1.

    Google Scholar 

  • Jones, W.P. & Manners, A., (1988), “The calculation of the flow through a two-dimensional faired diffuser”, Proc. 6th Symp. on Turbulent Shear Flows, Toulouse, p. 17.7.1.

    MATH  Google Scholar 

  • Kadja, M., (1987), “Computation of recirculating flow in complex domains with algebraic Reynoldsstress closure and body-fitted meshes”, Ph.D. Thesis, University of Manchester.

    Google Scholar 

  • Lasher, W.C. & Taulbee, D.B., (1990), Engineering Turbulence Modelling and Experiments,Elsevier, (eds. Rodi and Ganic), p. 195.

    Google Scholar 

  • Van Leer, B., (1979), JCP, Vol. 32, p. 101.

    Article  ADS  Google Scholar 

  • Leonard, B.P., (1979), Comp. Meths. Appl. Mech. Engng., Vol. 19, p. 59.

    Article  ADS  MATH  Google Scholar 

  • Lien, F.S. & Leschziner, M.A. (1990), “Modelling variable-area curved duct flow with a 3D non-orthogonal collocated FV method”, Proc. 4th UMIST Colloquium on Computational Fluid Dynamics, Dept. of Mech. Engng., UMIST, Manchester, p. 6.4.

    Google Scholar 

  • Lien, F.S., (1992), “Computational modelling of 3D flow in complex ducts and passages”, Ph.D. Thesis, University of Manchester.

    Google Scholar 

  • Lien, F.S. & Leschziner, M.A., (1991), “Multigrid convergence acceleration for complex flow including turbulenceß”, International Series of Numerical Mathematics, Birkhauser Verlag Basel, Vol. 98, p. 277.

    MathSciNet  Google Scholar 

  • Lien, F.S. & Leschziner, M.A., (1992), “Modelling shock/turbulent-boundary-layer interaction with second-moment closure within a pressure-velocity strategy”, Proc. 13th Int Conf. on Numerical Methods in Fluid Dynamics, Rome (to be published).

    Google Scholar 

  • Lin, C.A. & Leschziner, M.A., (1989), “ Computation of three-dimensional injection into swirling flow with second-moment closure”, Proc. 6th Int. Conf. on Numerical Methods in Laminar and Turbulent Flows, Swansea, Pineridge Press, Swansea, p. 1711.

    Google Scholar 

  • Majumdar, S., Rodi, W. I & Schonung, B., (1989), Finite Approximations in Fluid Mechanics 11,Notes on Numerical Fluid Mechanics,Vieweg Verlag.

    Google Scholar 

  • Mcguirk, J.J. & Page, J.G., (1989), “Shock capturing using a pressure-correction method”, AIAA 27th Aerospace Sciences Meeting, Reno, Nevada.

    Google Scholar 

  • Obi, S. (1991), “Berechnung komplexer turbulenter Strömungen mit einem Reynolds-SpannungsModell”, Doctoral Dissertation, University of Erlangen-Nürnberg.

    Google Scholar 

  • Obi, S., Peric, M. & Scheuerer, G., (1989), “A finite-volume calculation procedure for turbulent flows with second-order closure and collocated variable arrangement”, Proc. 7th Symp. Turbulent Shear Flows, Stanford University, p. 17.4.

    ADS  Google Scholar 

  • Patankar, S.V., (1980), Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York.

    MATH  Google Scholar 

  • Peric, M. (1985), “A finite volume method for the prediction of three dimensional fluid flow in complex ducts”, Ph.D. Thesis, University of London.

    Google Scholar 

  • Rhie, C.M. & Chow, W.L., (1983), J. AIAA, Vol. 21, p. 1525.

    Article  ADS  MATH  Google Scholar 

  • Sebag, S. & Laurence, D., (1990), Engineering Turbulence Modelling and Experiments, Elsevier, (eds. Rodi and Ganic), p. 175.

    Google Scholar 

  • Shyy, W. & Braaten, M.E., (1986), Int. J. Numerical Methods Fluids, Vol. 6, p. 861.

    Article  MathSciNet  ADS  Google Scholar 

  • Wolfshtein, M.W., (1969), Int J. Heat and Mass Transfer, Vol. 12, p. 301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lien, FS., Leschziner, M.A. (1993). Second-Moment Modelling of Recirculating Flow with a Non-Orthogonal Collocated Finite-Volume Algorithm. In: Durst, F., Friedrich, R., Launder, B.E., Schmidt, F.W., Schumann, U., Whitelaw, J.H. (eds) Turbulent Shear Flows 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77674-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77674-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77676-2

  • Online ISBN: 978-3-642-77674-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics