Advertisement

Stereo

  • Juyang Weng
  • Thomas S. Huang
  • Narendra Ahuja
Part of the Springer Series in Information Sciences book series (SSINF, volume 29)

Abstract

From stereo image sequences, the 3-D positions of the object points can be determined by stereo triangulation. Therefore, motion estimation can deal with 3-D coordinates directly. In this sense, one faces a less difficult problem here than in the monocular case we discussed before. However, stereo motion and structure analysis has its own characteristics, especially in dealing with uncertainty of the 3-D points. In this chapter, we will discuss stereo motion estimation using different weighting schemes, including unweighted, scalar-weighted, and matrix-weighted objective functions. We will investigate the performance limit in terms of the theoretical error bound. We will also address problems caused by outliers or gross errors in input data, and the use of robust statistics to cope with these problems.

Keywords

Stereo Image Stereo Match Baseline Length Stereo Pair Error Covariance Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 7.1
    K. S. Arun, T. S. Huang, S. D. Blostein: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Machine Intell., 9, 698–700 (1987)CrossRefGoogle Scholar
  2. 7.2
    N. Ayache, O. Faugeras: Building, registration, and fusing noisy visual maps, in Proc. 1st Int’l Conf. Computer Vision (IEEE Computer Soc. Press, Washington D.C 1987) pp. 73–82Google Scholar
  3. 7.3
    S. D. Blostein, T. S. Huang: Error analysis in stereo determination of 3-D point positions. IEEE Trans. Pattern Anal. Machine Intell., 9, 752–765 (1987)CrossRefGoogle Scholar
  4. 7.4
    T. J. Broida, R. Chellappa: Estimation of object motion parameters from noisy images. IEEE Trans. Pattern Anal. Machine Intell., 8, 90–99 (1986)CrossRefGoogle Scholar
  5. 7.5
    K. M. Brown, J. E. Dennis: Derivative free analogues of the Levenberg-Marquardt and Gauss algorithms for nonlinear least squares approximation. Numeriche Mathematik, 18, 289–297 (1972)CrossRefMATHMathSciNetGoogle Scholar
  6. 7.6
    N. Cui, J. Weng, P. Cohen: Extended structure and motion analysis from monocular image sequences, in Proc. 3rd Int’l Conf. Computer Vision (IEEE Computer Soc. Press, Washington D.C. 1990) pp. 222–229Google Scholar
  7. 7.7
    N. Cui, J. Weng, P. Cohen: Motion and structure from long stereo image sequences, in Proc. IEEE Workshop on Visual Motion (IEEE Computer Soc. Press, Washington D.C. 1991) pp. 75–80Google Scholar
  8. 7.8
    O. D. Faugeras, M. Hebert: A 3-D recognition and positioning algorithm using geometrical matching between primitive surfaces, in Proc. 8th Int’l Joint Conf. Artif. Intell. (William Kaufmann, Los Angeles, LA 1983) pp. 996 - 1002Google Scholar
  9. 7.9
    T. S. Huang, S. D. Blostein, E. A. Margerum: Least-squares estimation of motion parameters from 3-D point correspondences, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (IEEE Computer Soc. Press, Washington D.C. 1986) pp. 198–201Google Scholar
  10. 7.10
    P. J. Huber: Robust Statistics (Wiley, New York, 1981)CrossRefMATHGoogle Scholar
  11. 7.11
    D. C. Hoaglin, F. Mosteller, J. W. Tucky: Understanding Robust and Exploratory Data Analysis (Wiley, New York, 1983)MATHGoogle Scholar
  12. 7.12
    B. K. Horn: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Amer., A, 4, 629–642 (1987)CrossRefGoogle Scholar
  13. 7.13
    B. Kamgar-Parsi, B. Kamgar-Parsi: Evaluation of quantization error in computer vision. IEEE Trans. Pattern Anal. Machine Intell., 11, 929–940 (1989)CrossRefGoogle Scholar
  14. 7.14
    S. M. Kiang, R. J. Chou, J. K. Aggarwal: Triangulation errors in stereo algorithms, in Proc. IEEE Workshop on Computer Vision (IEEE Computer Soc. Press, Washington D.C. 1987) pp. 72–78Google Scholar
  15. 7.15
    R. V. Kumar, A. Tirumalai, R. C. Jain: A non-linear optimization algorithm for the estimation of structure and motion parameters, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (IEEE Computer Soc. Press, Washington D.C. 1989) pp. 136–143Google Scholar
  16. 7.16
    C. Lee, R. M. Haralick, X. Zhuang: Recovering 3-D motion parameters from image sequences with gross errors, in Proc. Workshop on Visual Motion (IEEE Computer Soc. Press, Washington D.C. 1989) pp. 46–53CrossRefGoogle Scholar
  17. 7.17
    K. Levenberg: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math., 2, 164–168 (1944)MATHMathSciNetGoogle Scholar
  18. 7.18
    D. W. Marquardt: An algorithm for least squares estimation of nonlinear parameters. SIAM J. Appl. Math., 11, 431–441 (1963)MATHMathSciNetGoogle Scholar
  19. 7.19
    L. Matthies, S. Shafer: Error Modeling in Stereo Navigation. IEEE J. Robotics and Automation, 3, 239–248 (1987)CrossRefGoogle Scholar
  20. 7.20
    J. J. Rodriguez, J. K. Aggarwal: Stochastic analysis of stereo quantization error. IEEE Trans. Pattern Anal. Machine Intell., 12, 467–470 (1990)CrossRefGoogle Scholar
  21. 7.21
    M. D. Shuster: Approximate algorithms for fast optimal attitude computation, in Proc. AIAA Guidance and Control Specialist Conf. (Palo Alto, 1978) pp. 88–95Google Scholar
  22. 7.22
    A. Tirumalai, B. Schunck, R. C. Jain: Robust dynamic stereo for incremental disparity map refinement (University of Washington, Seattle, WA 1990)Google Scholar
  23. 7.23
    J. Weng, N. Ahuja, T. S. Huang: Optimal motion and structure estimation, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (IEEE Computer Soc. Press, Washington D.C. 1989) pp. 144–152Google Scholar
  24. 7.24
    J. Weng, P. Cohen, N. Rebibo: Fusion of stereo views in long image sequences, in Proc. First International Workshop on Multi-Sensor Fusion and Environment Modeling (Int’l Advanced Robotics Programme, Toulouse, France 1989). Also ref.: Motion and structure estimation from stereo image sequences, accepted and to appear in IEEE Trans. Robotics and Automation (1992)Google Scholar
  25. 7.25
    J. Weng, P. Cohen: Robust motion and structure estimation using stereo vision, in Proc. Int’l Workshop Robust Computer Vision (University of Washington, Seattle, WA 1990)Google Scholar
  26. 7.26
    J. Weng, P. Cohen, M. Herniou: Stereo camera calibration with nonlinear corrections, in Proc. 10th Int’l Conf. Pattern Recognition (IEEE Computer Soc. Press, Washington D.C. 1990) pp. 246–253. Also ref.: Camera calibration with distortion models and accuracy evaluation, accepted and to appear in IEEE Trans. Pattern Anal. Machine Intell., 14 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Juyang Weng
    • 1
  • Thomas S. Huang
    • 1
  • Narendra Ahuja
    • 1
  1. 1.Beckman InstituteUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations