Viscoelastic Properties of Semidilute Polyelectrolyte Solutions

Conference paper

Abstract

Zero-shear viscosity η° and steady-state complinance Jc of poly(N-methyl-2-vinylpyridinium chloride) solutions were measured in the absence and presence of added-salt over a wide range of polymer concentration. The polymer concentration dependence of η° in semidilute regions increases with increasing added-salt concentrations Cs and almost agrees with that for non-ionic polymers in good solvents at high added-salt concentrations. JC in dilute regions depends on molecular weight M, polymer concentration C and Cs more strongly than that of non-ionic polymer solutions, as given by Jo ∝ M-2Cs. In entangled regions, on the other hand, Jc depends on polymer concentration only in the same manner as that of non-ionic polymer solutions, but its concentration dependence is weaker than that of non-ionic polymer solutions, as given by Je∝C-1.3. Moreover, the polymer concentration dependence of the weight-average relaxation time tw increases with increasing added-salt concentration in the semidilute region for η° and the entangled region for Jc. These viscoelastic properties of entangled-polyelectrolyte solutions can be well explained by the reptation model assuming that the correlation lengths related to entanglements are determined by the electrostatic interactions evaluated from the Donnan equilibrium.

Keywords

Anisotropy Titration Pyridine Macromolecule Dimethylformamide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Gennes P -G (1979) Scaling concepts in polymer physics. Cornell Univ press, Ithaca, NYGoogle Scholar
  2. 2.
    Noda I (1988) In: Nagasawa M (ed) Molecular conformation and dynamics of macromolecules in condensed systems. Elsevier, TokyoGoogle Scholar
  3. 3.
    de Gennes P -G (1976) Macromolecules 9:587CrossRefGoogle Scholar
  4. 4.
    Takahashi Y, Isono Y, Noda I, Nagasawa M (1985) Macromolecules 18: 1002CrossRefGoogle Scholar
  5. 5.
    Takahashi Y, Noda I, Nagasawa M (1985) Macromolecules 18:2220CrossRefGoogle Scholar
  6. 6.
    Sakai M, Noda I, Nagasawa M (1972) J polym sci A-2 10:1047CrossRefGoogle Scholar
  7. 7.
    Rinaudo M, Graebling D (1986) Polym bull 15:253CrossRefGoogle Scholar
  8. 8.
    Morris E R, Rees D A, Welsh E J (1980) J mol biol 138:383CrossRefGoogle Scholar
  9. 9.
    Yamaguchi M, Yamaguchi Y, Matsushita Y, Noda I (1990) Polym j (Tokyo) 22:1077CrossRefGoogle Scholar
  10. 10.
    Yamaguchi M, Wakutsu, Takahashi Y, Noda I (1992) Macromolecules in pressGoogle Scholar
  11. 11.
    Yamaguchi M, Wakutsu, Takahashi Y, Noda I (1992) Macromolecules in pressGoogle Scholar
  12. 12.
    Suzuki F, Hori K, Kozuka N, Komoda H, Katsuro K, Takahashi Y, Noda I, Nagasawa M (1986) Polym j(Tokyo) 18:911CrossRefGoogle Scholar
  13. 13.
    Takahashi Y, Yamaguchi M, Hori K, Suzuki F, Noda I (1989) Polym j (Tokyo) 21:815CrossRefGoogle Scholar
  14. 14.
    Janeschnitz-Kriger H J (1969) Adv polym sci 6:170CrossRefGoogle Scholar
  15. 15.
    Takahashi Y, Wakutsu M, Noda I (1990) Maeromolecules 23:242CrossRefGoogle Scholar
  16. 16.
    Takahashi Y, Umeda M, Noda I (1988) Maeromolecules 21:2257CrossRefGoogle Scholar
  17. 17.
    Doi M, Edwards S F (1986) The theory of polymer dynamics. Clarendon press, OxfordGoogle Scholar
  18. 18.
    de Gennes P.-G. (1976) Maeromolecules 9:594CrossRefGoogle Scholar
  19. 19.
    Flory P J (1953) Principles of polymer chemistry. Cornell Univ press, Ithaca, NYGoogle Scholar
  20. 20.
    Nagasawa M (1974) In: Selegny E (ed) Polyelectrolytes. D Reidel publishing company, BostonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • I. Noda
    • 1
  1. 1.Department of Applied ChemistryNagoya University Furo-choChikusa-ku, NagoyaJapan

Personalised recommendations