Interdomain Communicaton via Magnetic Spin Diffusion in a Microphase-Separated Polyurethane Elastomer

  • Laurence A. Belfiore
Conference paper

Abstract

High-resolution carbon-13 solid state NMR spectroscopy is employed to monitor communication between the rigid and mobile domains in a polyether-polyurethane elastomer via proton magnetization transport. Results from thermal analysis and polarized optical microscopy indicate that the urethane-rich hard domains are semicrystalline and exhibit spherulitic growth that is somewhat disordered. Proton magnetization gradients are established via mobility differences between the two domains, and the ensuing spin-diffusion process is monitored via the carbon-13 nuclear manifold. Chemical structural differences between the two types of segments produce high-resolution 13C NMR signals that allow one to track interdomain communication. Magnetic spin-temperature equilibration between the two domains occurs on the 10–100 ms time scale. This is consistent with a finely dispersed array of hard and soft microphases. The polyurethane proton-spin-diffusion results are similar to those obtained for a variety of SURLYN™ and KRATON™ commercial phase-separated copolymers.

Keywords

Crystallization Polystyrene Macromolecule Styrene Calorimeter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature References

  1. 1.
    L. A. Belfiore and A. A. Patwardhan, ACE Proceedings, Div. Polym. Mater. Sci. Engr., 54, 638 (1986).Google Scholar
  2. 2.
    L A. Belfiore, R. J. Shah, and C. Cheng, in “Contemporary Topics in Polymer Science, Multiphase Macromolecular Systems”, Volume 6, B. M. Culbertson, editor, Plenum Press, 6, 619 (1989).Google Scholar
  3. 3.
    M. Goldman and L Shen, Physical Review, 144(1), 321 (1966).CrossRefGoogle Scholar
  4. 4.
    See, for example, “Multiphase Polymers”, S. L Cooper and G. M. Estes, eds., ACS Adv. Chem. Series, 176 (1979).Google Scholar
  5. 5.
    T. C. Farrar and E. D. Becker, “Pulse and Fourier Transform NMR”, Ch. 2 and 4, Academic Press, New York (1971).Google Scholar
  6. 6.
    C. P. Slichter, “Principles of Magnetic Resonance”, 2nd edition, p. 42 and Ch. 3, Springer-Verlag, Heidelberg (1978).Google Scholar
  7. 7.
    R. A. Assink, J. Polym. Sci., Polym. Phys. Ed., 15, 59 (1977).CrossRefGoogle Scholar
  8. 8.
    R. A. Assink and G. L. Wilkes, Polym. Engr. Sci., 17(8), 606 (1977).CrossRefGoogle Scholar
  9. 9.
    R. A. Assink and G. L. Wilkes, J. Appl. Polym. Sci., 26, 3689 (1981).CrossRefGoogle Scholar
  10. 10.
    W. Nierzwicki, J. Appl. Polym. Sci., 29, 1203 (1984).CrossRefGoogle Scholar
  11. 11.
    J. R. Havens and D. L. VanderHart, Macromolecules, 18, 1663 (1985).CrossRefGoogle Scholar
  12. 12.
    T. Shiibashi, Y. Kitazawa, K. Arai, and E. Maekawa, Kobunshi Ronbunshu, 45(2), 147 (1988).CrossRefGoogle Scholar
  13. 13.
    J. J. Dumais, L. W. Jelinski, L. M. Leung, I. Gancarz, A. Galambos, and J. T. Koberstein, Macromolecules, 18, 116 (1985).CrossRefGoogle Scholar
  14. 14.
    A. Cholli, J. Koenig, T. Sun, and H. Zhou, J. Appl. Polym. Sci., 28, 3497 (1983).CrossRefGoogle Scholar
  15. 15.
    C. D. Eisenbach and W. Gronski, Makromol. Chem., Rapid Commun., 4, 707 (1983).CrossRefGoogle Scholar
  16. 16.
    L. A. Belfiore, Polymer, 27, 80 (1986).CrossRefGoogle Scholar
  17. 17.
    L. A. Belfiore, T. J. Lutz, and C. Cheng, in “Solid State NMR Characterization of Polymers”, L. J. Mathias, editor, Plenum Press, p. 145 (1991).Google Scholar
  18. 18.
    C. D. Eisenbach, M. Baumgartner, and C. Gunter, in “Advances in Elastomers and Rubber Elasticity”, J. Lal and J. E. Mark, editors, Plenum (1987).Google Scholar
  19. 19.
    R. A. Wind, F. E. Anthonio, M. J. Duijvestijn, J. Smidt, J. Trommel, and G. M. C. DeVette, J. Magn. Reson., 52, 424 (1983).CrossRefGoogle Scholar
  20. 20.
    E. O. Stejskal and J. Schaefer, J. Magn. Reson., 18, 560 (1975).CrossRefGoogle Scholar
  21. 21.
    W. L. Earl and D. L. VanderHart, J. Magn. Reson., 48, 35 (1982).CrossRefGoogle Scholar
  22. 22.
    K. K. S. Hwang, S. B. Lin, S. Y. Tsay, and S. L. Cooper, Polymer, 25, 947 (1984).CrossRefGoogle Scholar
  23. 23.
    M. A. Vallance, J. L. Castles, and S. L. Cooper, Polymer, 25, 1734 (1984).CrossRefGoogle Scholar
  24. 24.
    L. W. Jelinski, Macromolecules, 14, 1341 (1981).CrossRefGoogle Scholar
  25. 25.
    L. A. Belfiore, Polymer Preprints, 29(1), 17 (1988).Google Scholar
  26. 26.
    P. Caravatti, P. Neuenschwander, and R. R. Ernst, Macromolecules, 18, 119 (1985).CrossRefGoogle Scholar
  27. 27.
    J. Crank, “The Mathematics of Diffusion”, Oxford University Press (1956).Google Scholar
  28. 28.
    H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids”, 2nd edition, Oxford University Press (1959).Google Scholar
  29. 29.
    S. R. Hartmann and E. L. Hahn, Phys. Review, 128, 2042 (1962).CrossRefGoogle Scholar
  30. 30.
    A. Pines, M. G. Gibby, and J. S. Waugh, J. Chem. Phys., 59, 569 (1973).CrossRefGoogle Scholar
  31. 31.
    L. A. Belfiore, T. J. Lutz, C. Cheng, and C. E. Bronnimann, Journal of Polymer Science; Polymer Physics Edition, 8, 1261 (1990).Google Scholar
  32. 32.
    M. D. Meadows, C. P. Christenson, W. L. Howard, M. A. Harthcock, R. E. Guerra, and R. B. Turner, Macromolecules, 23, 2440 (1990).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Laurence A. Belfiore
    • 1
  1. 1.Department of Chemical Engineering Polymer Physics and Engineering LaboratoryColorado State UniversityFort CollinsUSA

Personalised recommendations