Regulation of Switch Recombination to the Murine γ 1 Gene

  • W. Dunnick
  • L. Elenich
  • J. Berry
  • D. Albrecht
  • J. Stavnezer
  • J. Latham Claflin
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 182)


The Immunoglobulin heavy chain switch, in which a variable region gene is rearranged from association with the Cμ gene to association with a C7, Ce, or Cα gene, is mediated by a recombination event between switch (S) regions [reviewed in 1]. Switch regions are 2 to 10 kb segments of simple sequences repeated in tandem and are found upstream of each of the heavy chain C genes, except Cδ [1]. Switch recombination is regulated in a gene-specific way; individual B cells direct recombination to one, or sometimes two, CH genes out of the six possible genes. For example, B cells treated with a mitogen, like lipopolysaccharide (LPS), and moderate amounts of interleukin 4 (IL4) switch almost exclusively to the γ1 gene [2, 3].


Recombination Interferon Mellon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lutzker SG, Alt FW (1989) Immunoglobulin heavy-chain class switching. In: D. E. Berg and M. Howe (eds) Mobile DNA. ASM Press, Washington, D C, pp. 693–714.Google Scholar
  2. 2.
    Radbruch A, Muller W, Rajewksy K (1986) Class switch recombination is IgG1 specific on active and inactive IgH loci of IgG1-secreting B-cell blasts. Proc Natl Acad Sci. USA 83:3954–3957.PubMedCrossRefGoogle Scholar
  3. 3.
    Kepron MR, Chen Y-W, Uhr JW, Vitetta ES (1989) IL-4 induces the specific rearrangement of γ1 genes on the expressed and unexpressed chromosomes of lipopolysaccaride-activated normal murine B cells. J Immunol 143:334–339.PubMedGoogle Scholar
  4. 4.
    Esser C, Radbruch A (1990) Immunoglobulin class switching: Molecular and cellular analysis. Ann Rev Immunol 8:717–735.CrossRefGoogle Scholar
  5. 5.
    Stavnezer-Nordgren J, Sirlin S (1986) Specificity of immunoglobulin heavy chain switch correlates with activity of germline heavy chain genes prior to switching. EMBO J 5:95–102.PubMedGoogle Scholar
  6. 6.
    Yancoupoulos GD, DePinho RA, Zimmerman KA, Lutzker G, Rosenberg N, Alt FW (1986) Secondary rearrangement events in pre-B cells: VHDJH replacement by a LINE-1 sequence and directed class switching. EMBO J 5:3259–3266.Google Scholar
  7. 7.
    Berton MT, Uhr JW, Vitetta ES (1989) Synthesis of germline γ1 immunoglobulin heavy-chain transcripts in resting B cells: Induction by interleukin 4 and inhibition by Interferon 7. Proc Natl Acad Sci USA 86:2829–2833.PubMedCrossRefGoogle Scholar
  8. 8.
    Xu M, Stavnezer J (1990) Structure of germline immunoglobulin heavychain γ1 transcripts in interleukin 4 treated mouse spleen cells. Dev. Immunol. 1:11–17.PubMedCrossRefGoogle Scholar
  9. 9.
    Xu M, Stavnezer J (1992) Regulation of transcription of Immunoglobulin germline γ1 RNA: Analysis of the promoter/enhancer. EMBO J 11:145–155.PubMedGoogle Scholar
  10. 10.
    Coffman RL, Carty J (1986) A T cell activity that enhances polyclonal IgE production and its inhibition by interferon-γ. J Immunol 136:949–954.PubMedGoogle Scholar
  11. 11.
    Schultz C, Elenich LA, Dunnick WA (1991) Nuclear protein binding to octamer motifs in the immunoglobulin γ1 switch region. Intl Immunol 3:109–116.CrossRefGoogle Scholar
  12. 12.
    Singer-Sam J, LeBon JM, Dai A, Riggs AD (1992) A sensitive, quantitative assay for measurement of allele-specific transcripts differing by a single nucleotide. PCR Meth Appl 1:160–163.Google Scholar
  13. 13.
    Gerstein RM, Frankel WN, Hsieh C-L, Durdik M, Rath S, Coffin JM, Nisonoff A, Sclsing E (1990) Isotype switching of an Immunoglobulin heavy chain transgene occurs by DNA recombination between different chromosomes. Cell 63:537–548.PubMedCrossRefGoogle Scholar
  14. 14.
    Shimizu A, Nussenzweig MC, Han H, Sanchez M, Honjo T (1991) Transsplicing as a possible molecular mechanism for the multiple isotype expression of the Immunoglobulin gene. J Expt Med 173:1385–1393.CrossRefGoogle Scholar
  15. 15.
    Nolan-Willard M, Berton MT, Tucker P (1992) Coexpression of μ and γ1 heavy chains can occur by a discontinuous transcription mechanism from the same unrearranged chromosome. Proc Natl Acad Sci. USA 89:1234–1238.PubMedCrossRefGoogle Scholar
  16. 16.
    Efrat S, Linde S, Kofod H, Spector D, Delannoy M, Grant S, Hanahan D, Baekkeskov S (1988) Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene. Proc Natl Acad Sci. USA 85:9037–9041.PubMedCrossRefGoogle Scholar
  17. 17.
    Windle JJ, Weiner RI, Mellon PL (1990) Cell lines of the pituitary gonadotrope lineage derived by targeted oncogenesis in transgenic mice. Mol Endo 4:597–603.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • W. Dunnick
    • 1
  • L. Elenich
    • 1
  • J. Berry
    • 1
  • D. Albrecht
    • 2
  • J. Stavnezer
    • 2
  • J. Latham Claflin
    • 1
  1. 1.Department of Microbiology and ImmunologyUniversity of Michigan, Medical SchoolAnn ArborUSA
  2. 2.Department of Molecular Genetics and MicrobiologyUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations