Advertisement

Double-Strand Breaks Associated with V(D)J Recombination at the TCRδ Locus in Murine Thymocytes

  • D. B. Roth
  • P. B. Nakajima
  • J. P. Menetski
  • M. J. Bosma
  • M. Gellert
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 182)

Abstract

Somatic recombination events are responsible for assembling the variable regions of Immunoglobulin and T cell receptor genes from germline-encoded DNA segments (Tonegawa, 1983; Lewis and Gellert, 1989). These rearrangements are mediated by a recombination activity that recognizes signal sequences (consisting of conserved heptamer and nonamer elements separated by nonconserved spacer regions of 12 or 23 nucleotides) located adjacent to the V, D, and J coding segments. Although the mechanism of the reaction remains obscure, recombination is thought to involve either single-stranded or double-stranded cleavage at the border between a signal heptamer and a coding segment, followed by rejoining of the DNA ends in a new configuration (Alt and Baltimore, 1982; Lewis and Gellert, 1989).

Keywords

Micrococcus Luteus Signal Joint Recombination Signal Recombination Signal Sequence Cell Receptor Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, F. W. and D. Baltimore (1982). Joining of Immunoglobulin heavy chain gene segments: implications from a chromosome with evidence of three D-JH fusions. Proc. Natl. Acad. Sci. USA 79: 118.CrossRefGoogle Scholar
  2. Bainton, R., P. Gamas and N. L. Craig (1991). Tn7 transposition in vitro proceeds through an excised transposon intermediate generated by staggered breaks in DNA. Cell 65: 05.CrossRefGoogle Scholar
  3. Carroll, A. M. and M. J. Bosma (1991). T-lymphocyte development in Scid mice is arrested shortly after the initiation of T-cell receptor δ gene recombination. Genes Devel. 5: 357.CrossRefGoogle Scholar
  4. Engels, W. R., D. M. Johnson-Schlitz, W. B. Eggleston and J. Sved (1990). High frequency P element loss in Drosophila is homolog dependent. Cell 62: 15.CrossRefGoogle Scholar
  5. Feeney, A. J. (1992). Comparison of junctional diversity in the neonatal and adult Immunoglobulin repertoires. Intern. Rev. Immunol. 8: 13.CrossRefGoogle Scholar
  6. Gu, H., I. Forster and K. Rajewsky (1990). Sequence homologies, Nsequence insertion and JH gene utilization in VHDJH joining: implications for the joining mechanism and the ontogenetic timing of Ly1 B cell and B-CLL progenitor generation. EMBO J. 9: 133.Google Scholar
  7. Haniford, D. B., H. W. Benjamin and N. Kleckner (1991). Kinetic and structural analysis of a cleaved donor intermediate in Tn10 transposition. Cell 64: 71.Google Scholar
  8. Lewis, S. and M. Geliert (1989). The mechanism of antigen receptor gene assembly. Cell 59: 85.CrossRefGoogle Scholar
  9. Lieber, M. R., J. E. Hesse, S. Lewis, G. C. Bosa, N. Rosenberg, K. Mizuuchi, M. J. Bosma and M. Geliert (1988). The defect in murine severe combined immunodeficiency: joining of signal sequences but not coding segments in V(D)J recombination. Cell 55: 7.PubMedCrossRefGoogle Scholar
  10. Lieber, M. R., J. E. Hesse, K. Mizuuchi and M. Geliert (1988). Lymphoid V(D)J recombination: nucleotide insertion at signal joints as well as coding joints. Proc. Natl. Acad. Sci. USA 85: 588.Google Scholar
  11. Raveh, D., S. H. Hughes, B. K Shafer and J. N. Strathern (1989). Analysis of the HO-cleaved MAT DNA intermediate generated during the mating type switch in the yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 220: 33.PubMedGoogle Scholar
  12. Roth, D. B., P. B. Nakajima, J. P. Menetski, M. J. Bosma and M. Geliert (1992). V(D)J recombination in mouse thymocytes: double-strand breaks near T cell receptor δ rearrangement signals. Cell 69: 1.CrossRefGoogle Scholar
  13. Roth, D. B. and J. H. Wilson (1988). Illegitimate recombination in mammalian cells. Genetic Recombination. Washington, DC, ASM Press. 62Google Scholar
  14. Tonegawa, S. (1983). Somatic generation of antibody diversity. Nature 302: 575.PubMedCrossRefGoogle Scholar
  15. White, S. I. and J. E. Haber (1990). Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9: 63.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • D. B. Roth
    • 1
  • P. B. Nakajima
    • 2
  • J. P. Menetski
    • 1
  • M. J. Bosma
    • 2
  • M. Gellert
    • 1
  1. 1.Laboratory of Molecular BiologyNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesdaUSA
  2. 2.Institute for Cancer Research, Fox Chase Cancer CenterPhiladelphiaUSA

Personalised recommendations