Skip to main content

Activities Involved in V(D)J Recombination

  • Chapter
Mechanisms in B-Cell Neoplasia 1992

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 182))

Abstract

The assembly of Immunoglobulin (Ig) and T cell receptor (TCR) variable region gene segments (V, D, J) is a complex reaction that likely involves numerous components. In a simplified view, the recombination mechanism involves recognition of conserved heptamer-spacer-nonamer recombination sequences (RS) that flank each germline V, D, or J segment, Introduction of double stranded breaks between the elements to be joined and the flanking RS elements, potential loss and/or addition of nucleotides at the coding junctions, polymerization and ligation activities to complete the joining process (Fig.1; Alt and Baltimore 1982; for review see Blackwell and Alt 1989; Lieber 1991). The RS sequences that flank V, D, and J segments are sufficient to target the site-specific activities of the V(D)J recombination system to the adjacent “coding” sequences (Akira et al. 1987; Hesse et al. 1989). A notable aspect of this recombination reaction is the asymmetric processing of the coding and RS joins; the latter rarely involve nucleotide deletion and/or addition (Lieber 1991). The relative orientation of the sequences in the chromosome determines the fate of the reaction products. If the two coding gene sequences are in “opposite” transcriptional orientation the reaction will lead to inversion of the segment of DNA between the coding and RS joins with retention of all products in the chromosome. If the two sequences are in the same transcriptional orientation, the coding joins will be retained in the chromosome while the RS joins will be deleted as a circle (Okasaki and Sakano 1988; Toda et al. 1988; Fig.l). However, linear deletion products have also been observed to accumulate in thymus providing more direct evidence for the occurrence of double stranded breaks during this recombination process (Roth et al. 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilera A, Klein, HL (1990) HPR1, a Novel Yeast Gene That Prevents Intrachromosomal Excision Recombination, Shows Carboxy-Terminal Homology to the Saccharomyces cerevisiae TOPI Gene. Mol Cell Biol 10:1439–1451.

    PubMed  CAS  Google Scholar 

  • Akira S, Okazaki K, Sakano H (1987) Two pairs of recombination signals are sufficient to cause immunoglobulin V-(D)-J joining. Science 238:1134–1138.

    Article  PubMed  CAS  Google Scholar 

  • Alt FW, Rathbun G, Oltz E, Taccioli E, Shinkai Y (1992) Function and Control of Recombination-Activating Gene Activity. Ann N Y Acad Sci. 651:277, 294.

    Article  PubMed  CAS  Google Scholar 

  • Alt FW, Blackwell TK, Yancopoulos GD (1987) Development of the Primary Antibody Repertoire. Science 238:1079–1087.

    Article  PubMed  CAS  Google Scholar 

  • Alt FW, Baltimore D (1982) Joining of immunoglobulin heavy chain gene segments: Implication from a chromosome with evidence of three D-JH fusions. Proc Natl Acad Sci. USA 79:4118–4122.

    Article  PubMed  CAS  Google Scholar 

  • Barnes DE, Tomkinson AE, Lehmann AR, Webster B, Lindahl T (1992) Mutations in the DNA Ligase I Gene of an Individual with Immunodeficiency and Cellular Hypersensitivity to DNA-Damaging Agents. Cell 69:495–503.

    Article  PubMed  CAS  Google Scholar 

  • Biedermann KA, Sun J, Giaccia AJ, Tosto M, Brown M (1991) Scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proc Natl Acad Sci. USA 88:1394–1397.

    Article  PubMed  CAS  Google Scholar 

  • Blackwell TK, Malynn BA, Pollock RR, Ferrier P, Covey LR, Fulop GM, Phillips RA, Yancopoulos GD, Alt FW (1989) Isolation of Scid pre-B cells that rearrange kappa light chain genes: formation of normal signal and abnormal coding joints. EMBO J 8(3):735–742.

    PubMed  CAS  Google Scholar 

  • Blackwell TK, Alt FW (1989) Mechanism and developmental program of immunoglobulin gene rearrangements in mammals. Annu Rev Genet 23:605–636.

    Article  PubMed  CAS  Google Scholar 

  • Bosma, MJ, and Carroll, AM (1991) The Scid mouse mutant: definition, characterization, and potential uses. Annu Rev Immunol 9:323–350.

    Article  PubMed  CAS  Google Scholar 

  • Bosma GC, Fired M, Custer RP, Carroll A, Gibson DM, Bosma MJ (1988) Evidence of functional Lymphocytes in some (LEAKY) Scid Mice. J Exp Med 167:1016–1033.

    Article  PubMed  CAS  Google Scholar 

  • Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in mouse. Nature 298:184–186.

    Google Scholar 

  • Carlson LM, Oettinger MA, Schatz DG, Masteller L, Hurley EA, McCormack WT, Baltimore D, Thompson CB (1991) Selective expression of RAG-2 in chicken B cells undergoing conversion gene conversion. Cell 64: 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Chun JJ, Schatz DG, Oettinger MA, Jaenisch R, Baltimore D (1991) The recombination activating gene-1 (RAG-1) transcript is present in the murine central nervous system. Cell 64:189–200.

    Article  PubMed  CAS  Google Scholar 

  • Ferrier P, Covey LR, Li SC, Suh H, Malynn BA, Blackwell K, Moureen AM, Alt FW (1990) Normal recombination substrate VH to DJH rearrangements in pre-B cell lines from Scid mice. J Exp Med 171:1909–1918.

    Article  PubMed  CAS  Google Scholar 

  • Fulop GM, Phillips RA (1990) The Scid mutation in mice causes a general defect in DNA repair. Nature 346:479–482.

    Article  Google Scholar 

  • Friedberg EC (1988) Deoxyribonucleic Acid Repair in the Yeast Saccharomyces cerevisiae. Microbiol Rev 52(1):70–102.

    PubMed  CAS  Google Scholar 

  • Giaccia AJ, Denko N, MacLaren R, Mirman D, Waldren C, Hart I, Stamato TD (1990) Human Chromosome 5 Complements the DNA Double-Strand Break-Repair Deficiency and Gamma-Ray Sensitivity of the XR-I Hamster Variant. Am J Hum Genet 747:459–469.

    Google Scholar 

  • Hendrickson EA, Schlissel MS, Weaver DT (1990) Wild-type V(D)J recombination in Scid pre-B cells. Mol Cell Biol 10:5397–5407.

    PubMed  CAS  Google Scholar 

  • Hendrickson EA, Qin X-Q, Bump EA, Schatz G, Oettinger M, Weaver DT (1991) A link between doublestrand break-related repair and V(D)J recombination: The Scid mutation. Proc Natl Acad Sci. USA 88:4061–4065.

    Article  PubMed  CAS  Google Scholar 

  • Hesse JE, Lieber MR, Geliert M, Mizuuchi K (1987) Extra chromosomal DNA substrates in pre-B cells undergo inversion or deletion at immunoglobulin V-(D)-J joining signals. Cell 49:775–783.

    Article  PubMed  CAS  Google Scholar 

  • Hesse JE, Lieber MR, Mizuuchi K, Geliert M (1989) V(D)J recombination: a functional definition of the joining signals. Gene Dev 3:1053–1061.

    Article  PubMed  CAS  Google Scholar 

  • Hoeijmakers JHJ, Bootsma D (1990) Molecular Genetics of Eukaryotic DNA Excision Repair. Cancer Cells 2(10):311–320.

    PubMed  CAS  Google Scholar 

  • Jeggo PA (1990) Studies on mammalian mutants defective in rejoining double-strand break in DNA. Mutat Res 239:1–16.

    PubMed  CAS  Google Scholar 

  • Jeggo PA, Hafezparast M, Thompson AF, Broughton C, Kaur GP, Zdzienicka M, Athwal RS (1992) Localization of a DNA repair gene (XRCC5) involved in double strand repair break rejoining to human chromosome 2 (in press).

    Google Scholar 

  • Jentsch S, McGrath JP, Varshavsky A (1987) The yeast DNA repair RAD6 encodes a ubiquitin-conjugating enzyme. Nature 329:131–134.

    Article  PubMed  CAS  Google Scholar 

  • Lieber MA (1991) Site-specific recombination in immune system. FASEB J 5:2934–2944.

    PubMed  CAS  Google Scholar 

  • Lieber MR, Hesse JE, Mizuuchi K, Geliert M (1987) Developmental stage specificity of the lymphoid V(D)J recombination activity. Genes Dev 1:751–761.

    Article  PubMed  CAS  Google Scholar 

  • Lieber MR, Hesse JE, Lewis S, Bosma C, Rosenberg N, Mizuuchi K, Bosma MJ, Geliert M (1988) The defect in murine severe combined immune deficiency: joining of signal sequences but not coding segments in V(D)J recombination. Cell 55:7–16.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka M, Nagawa F, Okazaki K, Kingsbury L, Yoshida K, Muller U, Larue D., Winer JA, Sakano H (1991) Detection of somatic DNA recombination in the transgenic mouse brain. Science 254:81–86.

    Article  PubMed  CAS  Google Scholar 

  • Malynn BA, Blackwell TK, Fulop G M, Rathbun A, Furley AJW, Ferrier P, Heinke LB, Phillips RA, Yancopoulos GD, Alt FW (1988) The Scid defect affects the final step of the immunoglobulin VDJ recombinase mechanism. Cell 54:453–460.

    Article  PubMed  CAS  Google Scholar 

  • Mombaerts P, Iacomini J, Johnson RS, Herrup K, Tonewaga S, Papaionnou VE (1992) RAG-1 Deficient Mice have no Mature B and T Lymphocytes. Cell 68:867–869.

    Article  Google Scholar 

  • Oettinger MA, Schatz DG, Gorka C, Baltimore D (1990) RAG-1 and RAG-2, adjacent genes that synergistically activate V(D)J recombination. Science 248:1517–1523.

    Article  PubMed  CAS  Google Scholar 

  • Okasaki K, Sakano H (1988) Thymocyte circular DNA excised from T cell receptor a-d gene complex. EMBO J 7(6):1669–1674.

    Google Scholar 

  • Petrini JHP, Carroll AM, Bosma MJ (1990) T-cell receptor gene rearrangements in functional T-cell clones from severe combined immune deficient (Scid) mice. reversion of the Scid phenotype in individual lymphocyte progenitors. Proc Natl Acad Sci. USA 87:3450–3453.

    Article  PubMed  CAS  Google Scholar 

  • Roth DB, Nakajima PB, Menetski JP, Bosma J, Geliert M (1992) V(D)J Recombination in Mouse Thymocytes: Double-Strand Breaks Near T Cell Receptor d Rearrangements Signals. Cell 69:41–53.

    Article  PubMed  CAS  Google Scholar 

  • Schatz DG, Oettinger MA, Baltimore D (1989) The V(D)J recombination activating gene, RAG-1. Cell 59:1035–1048.

    Article  PubMed  CAS  Google Scholar 

  • Schuler W, Weiler IJ, Schuler A, Phillips A, Rosenberg N, Mak TW, Kearney JF, Perry RP, Bosma JJ (1986) Rearrangement of antigen receptor genes is defective in mice with severe combined immune deficiency. Cell 46:963–972.

    Article  PubMed  CAS  Google Scholar 

  • Shinkai Y, Rathbun G, Lam K, Oltz M, Stewart V, Mendelsohn M, Charon J, Datta M, Young F, Stall AM, Alt FW (1992) RAG-2 Deficient Mice Lack Mature Lymphocytes due to Inability to Initiate VDJ Rearrangement. Cell 68:855–867.

    Article  PubMed  CAS  Google Scholar 

  • Toda M, Fujimoto S, Iwasato T, Takeshita S, Tezuka K, Ohbayashi T, Yamagishi H (1988) Structure of Extrachromosomal Circular DNAs Excised from T-cell Antigen Receptor Alpha and Delta-chain Loci. J Mol Biol 202:219–231.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taccioli, G.E. et al. (1992). Activities Involved in V(D)J Recombination. In: Potter, M., Melchers, F. (eds) Mechanisms in B-Cell Neoplasia 1992. Current Topics in Microbiology and Immunology, vol 182. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77633-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77633-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77635-9

  • Online ISBN: 978-3-642-77633-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics