Progenitor and Precursor B Lymphocytes of Mice. Proliferation and Differentiation In Vitro and Population, Differentiation and Turnover in SCID Mice In Vivo of Normal and Abnormal Cells

  • F. Melchers
  • D. Haasner
  • H. Karasuyama
  • L. Reininger
  • A. Rolink
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 182)


Mouse progenitor B cells (pro B cells*), with H and L chain genes in germline configuration, and precursor B cells with L chain gene loci in germline configuration and H chain gene loci in DHJH-rearranged forms (pre B-I cells, ref. 1) can be grown from single cells of fetal liver, of neonatal liver, spleen, blood and bone marrow, and from adult bone marrow for several months in serum-substituted media on stromal cells in the presence of IL7. When IL7 is removed from the medium, more than 90% of the progenitors and precursors loose the capacity to proliferate on stromal cells in the presence of IL7 within 2 days. In these two days they rearrange their H and L chain gene loci in- and out-of-frame and thereby generate slg- and slg+ B cells which both die rapidly by apoptosis. The slg+ B cells can be activated by lipopolysaccharide (LPS), antigen and IL2 to a primary response of proliferation and maturation to IgM-secreting, plaque forming cells (PFC). Most of these findings have been published by Rolink et al. [7].


Stromal Cell Fetal Liver SCID Mouse Chain Locus Plaque Form Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rolink A, Melchers F (1991) Molecular and cellular origins of B lymphocyte diversity. Cell 66:1081–1094.PubMedCrossRefGoogle Scholar
  2. 2.
    Osmond DG (1991) Proliferation kinetics and the lifespan of B cells in central and peripheral lymphoid organs. Curr. Op. In Immunol. 3:179–185.CrossRefGoogle Scholar
  3. 3.
    Rajewsky K (1992) Early and late B-cell development in the mouse. Curr. Op. In Immunol. 4:171–176.CrossRefGoogle Scholar
  4. 4.
    Hayashi SI, Kunisada T, Ogawa M, Sudo T, Kodama H, Suda T, Nishikawa S, Nishikawa SI (1990) Stepwise progression of B lineage differentiation supported by interleukin 7 and other stromal cell molecules. J. Exp. Med. 171:1683–1695.PubMedCrossRefGoogle Scholar
  5. 5.
    Cumano A, Paige CJ, Iscove NN, Brady G (1992) Bipotential precursors of B cells and macrophages in murine fetal liver. Nature 356:612–615.PubMedCrossRefGoogle Scholar
  6. 6.
    Hardy RR (1992) Variable gene usage, physiology and development of Ly1+ (CD5+) B cells. Curr. Op. Immunol. 4:181–185.CrossRefGoogle Scholar
  7. 7.
    Rolink A, Kudo A, Karasuyama H, Kikuchi Y, Melchers F (1991) Long-term proliferating early pre B cell lines and clones with the potential to develop to surface Ig-positive mitogen-reactive B cells “in vitro” and “in vivo”. EMBO J. 10:327–336.PubMedGoogle Scholar
  8. 8.
    Melchers F, Strasser A, Bauer SR, Kudo A, Thalmann P, Rolink A (1989) Cellular stages and molecular steps of murine B-cell development. Cold Spring Harbor Symp. Quant. Biol. LIV:183–189.Google Scholar
  9. 9.
    Gu H, Förster I, Rajewsky K (1990) Sequence homologies, N sequence insertion and JH utilization in VHDHJH joining: Implications for the joining mechanisms and the ontogenetic priming of Ly1 B cells and B-CLL progenitor generation. EMBO J. 9:2133–2140.PubMedGoogle Scholar
  10. 10.
    Oltz EM, Yancopoulos GD, Morrow MA, Rolink A, Lee G, Wong F, Kaplan K, Ollies S, Melchers F, Alt FA (1992) A novel regulatory myosin light chain gene distinguishes pre B cell subsets and is IL-7 inducible. EMBO J. 11:2759–2767.PubMedGoogle Scholar
  11. 11.
    Shinkai Y, Rathbun G, Lam KP, Oltz M, Stewart Y, Mendelson M, Charron J, Datta M, Young F, Stall AM, Alt FW (1992) RAG-2-deficient mice lack mature lymphocytes owing to inability to intiate (V(D)J) rearrangement. Cell 68:855–867.PubMedCrossRefGoogle Scholar
  12. 12.
    Rolink A, Streb M, Nishikawa SI, Melchers F (1991) The c-kit-encoded tyrosine kinase regulates the proliferation of early pre-B cells. Eur. J. Immunol. 21:2609–2612.PubMedCrossRefGoogle Scholar
  13. 13.
    McNiece IK, Langley KE, Zsebo KM (1991) The role of recombinant stem cell factor in early B cell development. J. Immunol. 156:3785–3790.Google Scholar
  14. 14.
    Miyake K, Medina KL, Obo S, Hamaoka T, Kincade OW (1990a) Monoclonal antibodies to Pgp-1/CD44 block lympho-hemopoiesis in long-term bone marrow cultures. J. Exp. Med. 171:477–488.PubMedCrossRefGoogle Scholar
  15. 15.
    Miyake K, Underhill CB, Lesley J, Kincade PW (1990b) Halyuronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J. Exp. Med. 172:69–75.PubMedCrossRefGoogle Scholar
  16. 16.
    Miyake K, Weissman IL, Greenberger JS, Kincade PW (1991) Evidence for a role of the integrin VLA-4 in lympho-hemopoiesis. J. Exp. Med. 173:599–608.PubMedCrossRefGoogle Scholar
  17. 17.
    Kodama H, Sudo H, Koyama H, Kasai S, Yamamoto S (1984) In vitro hemopoiesis within a microenvironment created by MC3T3-G2.PA6 preadipocytes. J. Cell Physiol. 118:233–240.PubMedCrossRefGoogle Scholar
  18. 18.
    Takai Y, Sakata T, Iwagami S, Tai G, Kita Y, Hamaoka T, Sakaguchi N, Yamagishi H, Tsuruta T, Teraoka H, Fujiwara H (1992) Identification of IL-7-dependent bone marrow-derived thy-, B220-, lymphoid cell clones that rearrange and express both Ig and T cell receptor genes. J. Immunol. 148:1329–1337.PubMedGoogle Scholar
  19. 19.
    Gu H, Kitamura D, Rajewsky K (1991) B cell development regulated by gene rearrangement arrest of maturation by membrane-bound Dμ protein and selection of DH element reading frames. Cell 65:47–54.PubMedCrossRefGoogle Scholar
  20. 20.
    Kitamura D, Roes J, Kühn R, Rajewsky K (1991) A B cell-deficient mouse by targeted disruption of the membrane exon of the Immunoglobulin μ chain gene. Nature 350:423–426.PubMedCrossRefGoogle Scholar
  21. 21.
    Kitamura D, Kudo A, Schaal S, Müller W, Melchers F, Rajewsky K (1992) A critical role of λ5 protein in B cell development. Cell 69:823–831.PubMedCrossRefGoogle Scholar
  22. 22.
    Era T, Ogama DL, Nishikawa SI, Okamoto M, Honjo T, Akaji K, Miyasaki JI, Yamamura K (1991) Differentiation of growth signal requirement of B lymphocyte precursor is directed by expression of Immunoglobulin. EMBO J. 10:337–342.PubMedGoogle Scholar
  23. 23.
    Kitamura D, Rajewsky K (1992) Targeted disruptioin of μ chain membrane exon causes loss of heavy-chain allelic exclusion. Nature 356:154–156.PubMedCrossRefGoogle Scholar
  24. 24.
    Yancopoulos GD, Alt FW (1985) Developmentally controlled and tissuespecific expression of unrearranged VH gene segments. Cell 40:271–281.PubMedCrossRefGoogle Scholar
  25. 25.
    Nemazee DA, Bürki K (1989) Clonal deletion of B lymphocytes in a transgenic mouse bearing anti MHC class I antibody genes. Nature 337:562–566.PubMedCrossRefGoogle Scholar
  26. 26.
    Goodnow CC, Crosbie J, Jorgensen H, Brink A, Basten A (1989) Induction of self-tolerance in mature peripheral B lymphocytes. Nature 342:385–391.PubMedCrossRefGoogle Scholar
  27. 27.
    Gu H, Tarlinton D, Müller W, Rajewsky K, Förster I (1991) Most peripheral B cells in mice are ligand-selected. J. Exp. Med. 173:1357–1371.PubMedCrossRefGoogle Scholar
  28. 28.
    Kubagawa H, Cooper MD, Carroll AJ, Burrows PD (1989) Light-chain gene expression before heavy-chain gene rearrangement in pre B cells transformed by Epstein-Barr-Virus. PNAS 86:2356–2360.PubMedCrossRefGoogle Scholar
  29. 29.
    Strasser A, Rolink A, Melchers F (1989) One synchronous wave of B cell development in mouse fetal liver changes at day 16 of gestation from dependence to independence of a stromal cell envrionment. J. Exp. Med. 170:1973–1986.PubMedCrossRefGoogle Scholar
  30. 30.
    Hardy RR, Hayakawa K (1991) A developmental switch in B lymphopoiesis. Proc. Natl. Acad. Sci. USA 88:11550–11554.PubMedCrossRefGoogle Scholar
  31. 31.
    Reininger L, Radaszkiewicz T, Kosco M, Melchers F, Rolink A (1992) Development of autoimmune disease in SCID mice populated with long-term “in vitro” proliferating (NZBxNZW) Fl pre B cells. J. Exp. Med., in press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • F. Melchers
    • 1
  • D. Haasner
    • 1
  • H. Karasuyama
    • 1
  • L. Reininger
    • 1
  • A. Rolink
    • 1
  1. 1.Basel Institute for ImmunologyBaselSwitzerland

Personalised recommendations