Skip to main content

Review Dynamics of nutrients and phytoplankton, and fluxes of carbon, nitrogen and silicon in the Antarctic Ocean

  • Conference paper
Weddell Sea Ecology

Summary

Four major functional units have been identified in the Southern Ocean and the mechanisms that control the dynamics of nutrients and phytoplankton are detailed for the different sub-systems. The very productive Coastal and Continental Shelf Zone (CCSZ, 0.9 M km 2) can experience severe macronutrient depletion paralleling intense diatom-dominated phytoplankton blooming (maximum > 8 mg Chl a m−3) at the ice edge. In the Seasonal Ice Zone (SIZ, 16 M km 2) dramatic variations in the hydrological structure occur in surface waters during the spring to summer retreat of the pack-ice, changing from a well-mixed system to a stratified one within the reaches of the ice edge. Grazing activity of euphausiids limits phytoplankton biomass to a moderate level (Chl a maximum around 4mg m−3). A shift from new production to a regenerated production regime has been demonstrated during spring, along with the key role played by protozoans in controlling high ammonium concentrations (maximum > 2 μM) in the surface layers. The well-mixed Permanently Open Ocean Zone (POOZ, 14 M km 2) is characterised by variable N/Si ratios in surface waters along a north-south transect: at the northern border of the POOZ (N/Si = 0.25) silicate concentrations as low as <10 μM could help limit the phytoplankton growth. Although favourable conditions have been demonstrated for the initiation of blooms in spring in the Antarctic Circumpolar Current, it appears that critical-depth/ mixing-depth relationships control maximum chlorophyll a concentrations < 1 μg l−1 during summer. The POOZ is usually not influenced directly by euphausiids, except for the Scotia Sea and Drake Passage where migrations of krill from the adjacent SIZ are usual. Mesoscale eddies are typical of the Polar Front Zone (FPZ, 3 M km 2): significant increases in phytoplankton biomass have been reported in this frontal area (maximum Chl a = 2 mg m−3). Food web and biogeochemical cycles in this sub-system are poorly documented. The question of limitation of the primary production by eolian-transported trace-metals in these different sub-systems is still a matter of debate, although clear iron limitation has been evidenced for offshore waters of the Ross Sea.

Data presented here were collected during the European Polarstern Study (EPOS) sponsored by the European Science Foundation

Correspondence to: P. Tréguer

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ainley D, Jacobs SS (1981) Sea-bird affinities for ocean and ice boundaries in the Antarctic. Deep-Sea Res 28:1173–1185

    Article  Google Scholar 

  • Anderson MA, Morel FMM (1982) The influence of aqueous iron chemistry on the uptake of iron by the costal diatom Thalassiosira weisfloggi. Limnol Oceanogr 27:789–813

    Article  CAS  Google Scholar 

  • Bareille G (1991) Flux sédimentaires, silice biogène et détritiques dans le secteur Indien de l’Océan Austral: paléoproductivité et évolution hydrologique au cours du dernier cycle climatique. PhD Thesis, Université de Bordeaux 1, 259 pp

    Google Scholar 

  • Bareille G, Labracherie M, Labeyrie L, Pichon JJ, Turon JL (1991) Biogenic silica accumulation rate during the Holocene in the southeastern Indian Ocean Mar Chem 35:537–552

    CAS  Google Scholar 

  • Bathmann U, Nöthig EM, Jennings F, Fahrbach E, Makaraov A (1990) Physical, chemical and biological properties along a west-east transect across the Weddell Sea, Antarctica, in early austral spring 1989. Symposium Biogeochemistry and Circulation of Water masses in the Southern Ocean, Brest, 3–6 July (Abstr)

    Google Scholar 

  • Beklemishev KV (1958) Latitudinal zonality in the distribution of Antarctic phytoplankton (in Russian). Inf Byull Sov Antarkt Eksped 3:35–36

    Google Scholar 

  • Bres B, Brunet C, Metzl N, Poisson A, Schauer B (1991) Decadal, interannual, monthly and daily sea surface fCO2 variations (Indian and Southern Oceans sectors). The global carbon cycle NATO/ASI, II Ciocco, 8–20 September 1991, 12 pp (Abstr)

    Google Scholar 

  • Carbonell MC (1985) phytoplankton of an ice-edge bloom in the Ross Sea, with special reference to the elemental composition of Antarctic diatoms. MSc Thesis, Oregon State University, 133 pp

    Google Scholar 

  • Collos Y, Slawyk G (1986) 13C and 15N uptake by marine phytoplankton. IV. Uptake ratios and the contribution of nitrate to the productivity of Antarctic waters (Indian Ocean sector). Deep-Sea Res 33:1039–1051

    Article  CAS  Google Scholar 

  • Comiso JC, Sullivan CW (1986) Satellite microwave and in situ observations of the Weddell Sea ice cover and its marginal ice zone. J Geophys Res 91:9663–9681

    Article  Google Scholar 

  • Comiso JC, Maynard NG, Smith WO Jr, Sullivan CW (1990) Satellite ocean color studies of Antarctic ice edges in summer and autumn. J Geophys Res 95:9481–9486

    Article  Google Scholar 

  • Daniault N (1984) Apport des connaisances spatiales à la connaissance des courants de surface. Application à l’Océan Antarctique. Thèse D Ingenieur, UBO, Brest, 100 pp

    Google Scholar 

  • Daniault N, Ménard Y, Gonella J (1983) Eddy kinetic energy distribution in the Southern Ocean from SEASAT altimeter and FGGE drifting bouys. In: C Gautier, C Fieux M (eds) Large-scale oceanographie experiments and satellites. Reidel, Dordrecht, pp 41–56

    Google Scholar 

  • Davies AG (1990) Taking a cool look at iron. Nature 345: 114–115

    Article  Google Scholar 

  • De Baar HJW, Buma AGJ, Nolting RF, Cadée GC, Jacques G, Tréguer PJ (1990) On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotias Seas. Mar Ecol Prog Ser 65:105–122

    Article  Google Scholar 

  • De Master DJ (1981) The supply and accumulation of silica in the marine environment. Geochim cosmochim Acta 45:1715–1732

    Article  Google Scholar 

  • DeMaster DJ, Nelson TM, Harden SL, Nittrouer CA (1991) The cycling and accumulation of biogenic silica and organic carbon in Antarctic deep-sea and continental margins. Mar Chem 35:489–502

    Article  CAS  Google Scholar 

  • Dortch Q (1990) The interaction between ammonium and nitrate uptake in phytoplankton. Mar Ecol Prog Ser 61:183–201

    Article  CAS  Google Scholar 

  • Ekau W (1990) Demersal fish fauna of the Weddell Sea. Antarct Sci 2:129–137

    Article  Google Scholar 

  • El-Sayed SZ (1984) Productivity of the Antarctic waters-a reappraisal. In: Holm-Hansen O, Bolis L, Gilles R (eds) Marine phytoplankton and productivity. Springer, Berlin, pp 19–34

    Google Scholar 

  • El-Sayed SZ (1990) Plankton. In: Glasby GP (ed) Antarctic sector of the Pacific Ocean. Elsevier Oceanogr Ser, Elsevier Amsterdam Oxford, pp 207–241

    Google Scholar 

  • El-Sayed SZ, Taguchi S (1981) Primary production and standing crop of phytoplankton along the ice-edge in the Weddell Sea. Deep-Sea Res 28:1017–1032

    Article  CAS  Google Scholar 

  • El-Sayed SZ, Weber LH (1982) Spatial and temporal variations in phytoplankton biomass and primary productivity in the SW Atlantic and the Scotia Sea. Polar Biol 1:83–90

    Google Scholar 

  • Finden DAS, Tipping E, Jaworski GHM, Reynolds CS (1984) Light-induced reduction of natural Fe III oxide and its relevance to phytoplankton. Nature, London 309:783–784

    Article  CAS  Google Scholar 

  • Fischer G, Fütterer D, Gersonde R, Honjo S, Ostermann D, Wefer G (1988) Seasonal variability of particle flux in the Weddell Sea and its relation to ice cover. Nature 335:426–428

    Article  Google Scholar 

  • Fukuchi M (1980) phytoplankton chlorophyll stocks in the Antarctic Ocean. J Oceanogr Soc Jpn 36:73–84

    Article  Google Scholar 

  • Fukuda Y, Ohno M, Fukuchi M (1986) Surface chlorophyll-a distribution in marginal icé zone in Antarctica. Mem Natl. Inst Polar Res Spec Issue 44:24–33

    Google Scholar 

  • Glibert PM, Biggs DC, McCarthy JJ (1982) Utilization of ammonium and nitrate during austral summer in the Scotia Sea. Deep-Sea Res 29:837–850

    Article  CAS  Google Scholar 

  • Glover HE (1977) Effect of iron-deficiency on Isochrysis galbana (Chrysophycae) and Phaeodactylum tricornutum (Bacillariophycae). J Phycol 13:208–212

    CAS  Google Scholar 

  • Goeyens L, Sörensson F, Tréguer P, Morvan J, Panouse M, Dehairs F (1991a) Spatiotemporal variability of inorganic nitrogen stocks and uptake fluxes in the Scotia-Weddell Confluence area during November and December 1988. Mar Ecol Prog Ser 77:7–19

    Article  CAS  Google Scholar 

  • Goeyens L, Tréguer P, Lancelot C, Mathot S, Becquevort S, Morvan J, Dehairs F, Baeyens W (1991b) Ammonium regeneration in the Scotia-Weddell Confluence area during spring 1988. Mar Ecol Prog Ser 78:241–252

    Article  CAS  Google Scholar 

  • Gordon AL, Georgi DT, Taylor HW (1977) Antarctic Polar Front zone in the western Scotia Sea-summer 1975. J Phys Oceanog 7:309–328

    Article  Google Scholar 

  • Hayes PK, Whitaker TM, Fogg GE (1984) The distribution and nutrient status of phytoplankton in the Southern Ocean between 20 and 70°W. Polar Biol 3:153–165

    Article  CAS  Google Scholar 

  • Hart TJ (1934) On the Phytoplankton of the south-west Atlantic and the Bellingshausen Sea, 1929–31. Discovery Rep 8:1–268

    Google Scholar 

  • Hart TJ (1942) Phytoplankton periodicity in Antarctic surface waters. Discovery Rep 21:261–356

    Google Scholar 

  • Hempel G (1985) Antarctic marine food webs. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer Berlin Heidelberg, pp 266–270

    Google Scholar 

  • Holm-Hansen O (1985) Nutrient cycles in Antarctic Marine Ecosystems. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 6–10

    Google Scholar 

  • Holm-Hansen O, El-Sayed SZ, Franceschini GA, Cuhel RL (1977) Primary production and factors controlling phytoplankton growth in the Southern Ocean. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institute, Washington DC, pp 11–50

    Google Scholar 

  • Hong H, Kester DR (1986) Iron assimilation by marine diatoms. Biol Bull 102:243–248

    Google Scholar 

  • Huntley ME, Karl DM, Niller PP, Holm-Hansen O (1991) Research on Antarctic Coastal Ecosystems Rates (RACER): an inter-disciplinary field experiment. Deep-Sea Res 38:911–942

    Article  Google Scholar 

  • Ichimura S, Fukushima H (1963) On the chlorophyll content in the surface water of the Indian and the Antarctic Oceans. Bot Soc Jpn 76:395–399

    CAS  Google Scholar 

  • Jacobs SS (1991) On the nature and significance of the Antarctic slope front. Mar Chem 35:9–24

    Article  Google Scholar 

  • Jacques G (1983) Some ecophysiological aspects of the Antarctic phytoplankton. Polar Biol 2:27–33

    Article  Google Scholar 

  • Jacques G (1989) Primary production in the open Antarctic Ocean during the austral summer, a review. Vie Milieu 39:1–17

    Google Scholar 

  • Jacques G (1991) Is the concept of new production-regenerated production valid for the Southern Ocean? Mar Chem 35:273–286

    Article  Google Scholar 

  • Jacques J, Minas M (1981) Production primaire dans le secteur Indian de l’Océan Antarctique en fin d’été. Oceanol Acta 4:33–41

    Google Scholar 

  • Jacques G, Panouse M (1991) Biomass and composition of size fractionated phytoplankton in the Weddell-Scotia Confluence area. Polar Biol 11:315–328

    Article  Google Scholar 

  • Jacques G, Tréguer P (1986) Les écosystèmes pélagiques marins, Ser Ecol 19. Masson Paris, 250 pp

    Google Scholar 

  • Jones EPJ, Nelson DM, Tréguer P (1990) Chemical Oceanography. In: Smith WO Jr (ed) Polar oceanography. Academic Press, San Diego New-York, pp 407–476

    Google Scholar 

  • Joos F, Sarmiento JL, Siegenthaler U (1991) Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations. Nature 349:772–774

    Article  CAS  Google Scholar 

  • Kanda H, Fukuchi M (1979) Surface chlorophyll-a concentration along the course of the FUJI to and from Antarctica in 1977–1978. Antarct Rec 66:37–49

    Google Scholar 

  • Karl DM (1991) Preface, Research on Antarctic Coastal Ecosystems Rates (RACER): an interdisciplinary field experiment. Deep-Sea Res 38:V–VII

    Article  Google Scholar 

  • Koike I, Holm-Hansen O, Biggs DC (1986) Inorganic nitrogen metabolism by antarctic phytoplankton with special reference to ammonium cycling. Mar Ecol Prog Ser 30:105–116

    Article  CAS  Google Scholar 

  • Lancelot C, Billen G, Becquevort S, Mathot S, Veth C (1991) Modelling carbon cycling through phytoplankton and microbes in the Scotia-Weddell Sea during sea ice retreat. Mar Chem 35:305–320

    Article  Google Scholar 

  • Lancelot C, Mathot S, Becquevort S, Dandois JM, Billen G (1992) Carbon and nitrogen cycling through the microbial network of the MIZ of the Southern Ocean with particular emphasis to the NW Weddell Sea. Rep Contract ANTAR/05, December 91, 106 pp

    Google Scholar 

  • Ledford-Hoffman PA, DeMaster DJ, Nittrouer CA (1986) Biogenic silica in the Ross Sea and the importance of Antarctic continental-shelf deposits in the marine silica budget. Geochim Cosmochim Acta 50: 2099–2110

    Article  CAS  Google Scholar 

  • Le Jehan S, Tréguer P (1983) Uptake and regeneration Si/N/P ratios in the Indian sector of the Southern Ocean. Originality of the biological cycle of silicon. Polar Biol 2:127–136

    Article  Google Scholar 

  • Lutjeharms JRE, Walters NM, Allanson BR (1985) In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs Springer, Berlin, pp 11–21

    Google Scholar 

  • Marr JWS (1962) The natural history and geography of the Antarctic krill (Euphausia superba Dana). Discovery Rep 32:33–464

    Google Scholar 

  • Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, London 331: 341–343

    Article  CAS  Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE, Broenkow WW (1989) VERTEX: phytoplankton/iron studies in the Gulf of Alaska. Deep-Sea Res 36:649–680

    Article  CAS  Google Scholar 

  • Martin JH, Fitzwater SE, Gordon RM (1990a) Iron deficiency limits phytoplankton growth in Antarctic waters. Global Biogeochem Cycles 4:5–12

    Article  CAS  Google Scholar 

  • Martin JH, Gordon RM, Fitzwater SE (1990b) Iron in Antarctic waters. Nature, London 345:156–158

    Article  CAS  Google Scholar 

  • Metzl N, Beauverger C, Brunet C, Goyet C, Poisson A (1991) Surface water carbon dioxide in the Southern Ocean: a highly variable CO2 source/sink region in summer. Mar Chem 35:85–96

    Article  CAS  Google Scholar 

  • McClain CR, Koblinsky CJ, Firestone J, Darzi M, Yeh E, Beckley BD (1991) Examining several Southern Ocean data sets. EOS 72:347, 351

    Article  Google Scholar 

  • Mitchell BG, Brody EA, Holm-Hansen O, McClain C, Bishop J (1991) Light limitation of phytoplankton biomass and macro-nutrient utilization in the Southern Ocean. Limnol Oceanogr 36:1662–1677

    Article  Google Scholar 

  • Moffet JW, Zika RG (1987) Reaction kinetics of hydrogen peroxide with copper and iron in seawater. Environ Sci Tech 21:804–810

    Article  Google Scholar 

  • Mordasova NV (1989) Chlorophyll distribution in the Antarctic zone of the Atlantic Ocean. Oceanology 29:368–374

    Google Scholar 

  • Muench RD (1990) Mesoscale phenomena in the polar oceans. In: Smith WO Jr (ed) Polar oceanography. Academic Press, San Diego New York, pp 223–286

    Google Scholar 

  • Murphy P, Feely RA, Gammon RH, Kelly KC (1991) Autumn air-sea disequilibrium of CO2 in South Pacific Ocean. Mar Chem 35:77–84

    Article  CAS  Google Scholar 

  • Nelson DM, Gordon LI (1982) Production and pelagic dissolution of biogenic silica in the Southern Ocean. Geochim Cosmochim Acta 46:491–501

    Article  CAS  Google Scholar 

  • Nelson DM, Smith WO Jr (1986) Phytoplankton dynamics off the western Ross sea ice edge. Deep-Sea Res 33:1389–1412

    Article  CAS  Google Scholar 

  • Nelson DM, Tréguer P (1992) On the role of silicon as a limiting nutrient to Antarctic diatoms: evidence from kinetics studies in the Ross Sea ice-edge zone. Mar Ecol Prog Ser 80:255–264

    Article  Google Scholar 

  • Nelson DM, Smith WO Jr, Muench R, Gordon LI, Sullivan CW, Husby D (1989) Particulate matter and nutrient distribution in the ice edge zone of the Weddell Sea: relationship to hydrography during the late summer. Deep-Sea Res 36:191–209

    Article  CAS  Google Scholar 

  • Nelson DM, Smith WO Jr (1991a) Sverdrup revisited: critical depths, maximum chlorophyll levels and the control of Southern Ocean productivity by the irradiance/mixing regime. Limnol Oceanogr 36:1650–1661

    Article  Google Scholar 

  • Nelson DM, Ahern JA, Herlihy LJ (1991b) Cycling of biogenic silica in the upper water column of the Ross Sea. Mar Chem 35:449–460

    Article  Google Scholar 

  • Nemoto T, Harrison G (1981) High latitude ecosystems. In: Long-hurst AR (ed) Analysis of marine ecosystems. Academic Press, London New York, pp 95–107

    Google Scholar 

  • Nolting RF, De Baar HJW, Bennekom AJ van, Masson A (1991) Cd, Cu and Fe in the Scotia Sea, Weddell/Scotia Confluence (Antarctica). Mar Chem 35:219–244

    Article  CAS  Google Scholar 

  • Oison RJ (1980) Nitrate and ammonium uptake in Antarctic waters. Limnol Oceanogr 25:1064–1074

    Article  Google Scholar 

  • Owens NJP, Priddle J, Whitehouse MJ (1991) Variations in phytoplanktonic nitrogen assimilation around South Georgia and in the Bransfield Strait (Southern Ocean). Mar Chem 35:287–304

    Article  CAS  Google Scholar 

  • Park YH, Gamberoni L, Charriaud E (1991) Frontal structure and transport of the Antarctic Circumpolar Current in the South Indian Ocean sector, 40–80°E. Mar Chem 35:45–62

    Article  Google Scholar 

  • Peng TH, Broecker WS (1991) Dynamical limitations on the Antarctic iron fertilization strategy. Nature 349:227–229

    Article  CAS  Google Scholar 

  • Pichon JJ, Bareille G, Labracherie M, Labeyrie L, Turon JL (1992) Quantification of the biogenic silica dissolution in Southern Ocean sediments. Quat Res (in press)

    Google Scholar 

  • Priddle J, Hawes I, Ellis-Evan JC, Smith TJ (1986) Antarctic aquatic ecosystems as habitats for phytoplankton. Biol Rev 61:199–238

    Article  Google Scholar 

  • Priddle J, Croxall JP, Everson I, Heywood RB, Murthy EJ, Prince PA, Sear CB (1988) Large-scale fluctuations in distribution and abundance of krill — A discussion of possible causes. In: Sahrhage D (ed) Antarctic Ocean and resources variability. Springer, Berlin Heidelberg, pp 169–182

    Google Scholar 

  • Probyn TA, Painting SJ (1985) Nitrogen uptake by size-fractionated phytoplankton in Antarctic surface waters. Limnol Oceanogr 30:1237–1332

    Article  Google Scholar 

  • Rönner U, Sörrenson F, Holm-Hansen O (1983) Nitrogen assimilation by phytoplankton in the Scotia Sea. Polar Biol 2:137–147

    Article  Google Scholar 

  • Rueter JG, Ades DR (1987) The role of iron nutrition in photosynthesis and nitrogen assimilation in Scenedesmus quadricauda (Chlorophycea). J Phycol 23:452–457

    Article  CAS  Google Scholar 

  • Sakshaug E, Holm-Hansen O (1984) Factors governing pelagic production. In: Holm-Hansen O, Bolis L, Gilles R (eds) Marine phytoplankton and productivity. Springer, Berlin, pp 1–18

    Google Scholar 

  • Sakshaug E, Slagstad D, Holm-Hansen O (1991) Factors controlling the development of phytoplankton blooms in the Antarctic ocean — a mathematical model. Mar Chem 35:259–272

    Article  CAS  Google Scholar 

  • Schlüter M (1991) Organic carbon flux and oxygen penetration into sediments of the Weddell Sea: indicators for regional differences in export production. Mar Chem 35:569–579

    Article  Google Scholar 

  • Shuchman RA, Onsott RG (1990) Remote sensing in the Polar Oceans. In: Smith WO Jr (ed) Polar oceanography. Academic Press, San Diego New York, pp 123–171

    Google Scholar 

  • Simon V, Sarano F (1987) Concentrations en sels nutritifs de l’eau de surface dans le secteur Indien de l’Ocean Austral (campagne Apsara II — Antiprod III, 1984). In: Fontugne M, Fiala M (eds) Caractéristiques biologiques, chimiques et sédimentologiques du secteur indien de l’Océan Austral (Plateau des Kerguelen). Rapp Camp Mer TAAF 84–01:87–103

    Google Scholar 

  • Slawyk G (1979) 13C and 15N uptake by phytoplankton in the Antarctic upwelling area: results from the Antiprod I cruise in the Indian sector. Aust J Mar freshwater Res 30:431–448

    Article  CAS  Google Scholar 

  • Slawyk G (1980) L’absorption des composés azotés par le phytoplankton marin: rôle dans la production primaire, relations avec la photosynthèse et les variables du milieu extra- et intracellulaire. Thèse Doc Sci, Université d’Aix-Marseille II, pp 1–213

    Google Scholar 

  • Smetacek V, Passow U (1990) Spring bloom initiation and Sverdrup’s critical depth model. Limnol Oceanogr 35:228–233

    Article  Google Scholar 

  • Smetacek V, Scharek R, Nöthig E-M (1990) Seasonal and regional variation in the pelagial and its relationship to the life history cycle of krill. In: KR Kerry, G Hempel (eds) Antarctic ecosystems, ecological change and conservation. Springer, New-York, pp 103–114

    Google Scholar 

  • Smith SL, Schnack-Schiel S (1990) Polar zooplankton. In: Smith WO Jr (ed) Polar oceanography. Academic Press, San Diego New York pp 527–598

    Google Scholar 

  • Smith WO Jr (1991) Nutrient distributions and new production in polar regions and contrast between the Arctic and the Antarctic. Mar Chem 35:245–258

    Article  CAS  Google Scholar 

  • Smith WO Jr, Harrison WG (1991) New production in polar regions: the role of environmental controls. Deep-Sea Res 38:1463–1479

    Article  CAS  Google Scholar 

  • Smith WO Jr, Nelson DM (1985) phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science 227:163–167

    Article  PubMed  CAS  Google Scholar 

  • Smith WO Jr, Nelson DM (1986) Importance of ice edge phytoplankton production in the Southern Ocean. BioScience 36:251–257

    Article  CAS  Google Scholar 

  • Smith WO Jr, Nelson DM (1990) phytoplankton growth and new production in the Weddell Sea marginal ice zone during austral spring and autumn. Limnol Oceanogr 35:809–821

    Article  Google Scholar 

  • Smith WO Jr, Sakshaug E (1990) Polar phytoplankton. In: Smith WO Jr (ed) Polar oceanography. Academic Press, San Diego, New York, pp 477–525

    Google Scholar 

  • Smith WO Jr, Keene NK, Comiso JC (1988) Interannual variability in estimated primary productivity in the Antarctic marginal ice zone. In: Sahrhage D (ed) Antarctic Ocean and resources variability. Springer, Berlin Heidelberg, pp 131–139

    Google Scholar 

  • Sommer U (1986) Nitrate and silicate compétition among antarctic phytoplankton. Mar Biol 91:345–351

    Article  CAS  Google Scholar 

  • Sommer U (1991) Comparative nutrient status and competitive interactions of two Antarctic diatoms (Corethron criophilum and Thalassiosira antarctica). J Plankton Res 13:61–75

    Article  Google Scholar 

  • Sullivan CW, McClain CR, Comiso JC, Smith (1988) phytoplankton standing crops within the Antarctic ice edge assessed by satellite remote sensing. J Geophys Res 93:12487–12498

    Article  Google Scholar 

  • Taniguchi A, Hamada E, Okazaki M, Naito Y (1986) Distribution of phytoplankton chlorophyll continuously recorded in the JARE-25 cruise to Syowa Station, Antarctica (SIBEX I). Mem Natl Inst Polar Res, Spec Issue 44:3–14

    Google Scholar 

  • Tréguer P, Bennekom AJ van (1991) The annual production of biogenic silica in the Antarctic Ocean. Mar Chem 35:477–488

    Article  Google Scholar 

  • Tréguer P, Gueneley, Kamatani A (1988) Biogenic silica and particulate organic matter from the Indian sector of the Southern Ocean. Mar Chem 23:167–180

    Article  Google Scholar 

  • Tréguer P, Gueneley S, Kamatani A, Quéguiner B (1989) Kinetics of dissolution of Antarctic diatoms and the biogeochemical cycle of silicon in the Southern Ocean. Polar Biol 9:397–403

    Article  Google Scholar 

  • Tréguer P, Nelson DM, Gueneley S, Zeyons C, Morvan J, Buma A (1990) The distribution of biogenic and lithogenic silica and the composition of particulate organic matter in the Scotia Sea and Drake Passage during autumn 1987. Deep-Sea Res 35:833–851

    Article  Google Scholar 

  • Tréguer P, Lindner L, Bennekom AJ van, Leynaert A, Panouse M, Jacques G (1991) The production of biogenic silica in the Weddell-Scotia Sea measured by 32Si. Limnol Oceanogr 36:1217–1227

    Article  Google Scholar 

  • Van Bennekom AJ, Berger GW, Gaast SJ van der, Vries RTP de (1988) Primary productivity and the silica in the Southern Ocean (Atlantic sector). In: Olansson E (ed) The Polar Ocean, the Antarctic: present and past. Paleogeogr Paleoclimatol, Special Issue 67:19–30

    Google Scholar 

  • Van Bennekom AJ, Buma AGJ, Nolting RF (1991) Dissolved aluminium in the Weddell-Scotia Confluence and effect of Al on the dissolution kinetics of bibgenic silica. Mar Chem 35:423–434

    Article  Google Scholar 

  • Verstraede D, Storch R, Dunham VL (1980) A comparison of the influence of iron and nitrate metabolism of Anabaena and Scenedesmus. Physiol Plant 50:47–51

    Article  Google Scholar 

  • Voronina NM (1971) The distribution of zooplankton biomass in the Southern Ocean. Deep-Sea Res 29:1–15

    Google Scholar 

  • Waite TD, Morel FMM (1984) Photoreductive dissolution of colloidal iron oxides in natural waters. Environ Sci Tech 18:860–868

    Article  CAS  Google Scholar 

  • Wefer G, Fischer G (1991) Annual primary production and export flux in the Southern Ocean from sediment trap data. Mar Chem 35:597–614

    Article  CAS  Google Scholar 

  • Wilson DL, Smith WO Jr, Nelson DM (1986) phytoplankton bloom dynamics of the western Ross Sea ice edge-I-Primary productivity and species-specific production. Deep-Sea Res 33:1375–1387

    Article  Google Scholar 

  • Yamaguchi Y, Shibata Y (1982) Standing stock and distribution of phytoplankton chlorophyll in the Southern Ocean south of Australia. Trans Tokyo Univ Fish 5:111–128

    Google Scholar 

  • Zentara SJ, Kamyshowski D (1981) Geographie variations in the relationship between silicic acid and nitrate in the South Pacific Ocean. Deep-Sea Res 28:455–465

    Article  CAS  Google Scholar 

  • Zwally HJ, Comiso JC Parkinson CL, Campabell WJ, Carsey FD, Gloersen P (1983) Antarctic sea ice, 1973–1976: satellite passive-microwave observations. NASA Spec Publ 459, Washington DC, 206 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Tréguer, P., Jacques, G. (1992). Review Dynamics of nutrients and phytoplankton, and fluxes of carbon, nitrogen and silicon in the Antarctic Ocean. In: Hempel, G. (eds) Weddell Sea Ecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77595-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77595-6_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77597-0

  • Online ISBN: 978-3-642-77595-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics