The primary structure and oxygen-binding properties of the single haemoglobin of the high-Antarctic fish Aethotaxis mitopteryx DeWitt

  • Rossana D’Avino
  • Angela Fago
  • Andreas Kunzmann
  • Guido di Prisco
Conference paper

Summary

The complete amino acid sequence of the single haemoglobin of the Antarctic fish Aethotaxis mitopteryx DeWitt has been established by automated repetitive Edman degradation on the intact and cleaved (enzymatically and chemically) α and β chains. A very high sequence identity with other Antarctic fish haemoglobins has been detected. The haemoglobin has a moderate Bohr effect and no Root effect. Organic phosphates and chloride also regulate oxygen binding only to a moderate extent. The lack of Root effect is consistent with the substitution His — Val at the HC3 C-terminal position of the β chain. The low overall heat of oxygenation suggests that in this species oxygen transport is an energy-saving process, presumably related to cold adaptation. The comparative analysis of the haemoglobins of Antarctic fishes emphasises some unique features of the oxygen-transport System of A. mitopteryx, which are likely to be related to its also rather unique mode of life.

Keywords

HPLC Enthalpy Acetonitrile Cysteine Trypsin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barra D, Petruzzelli R, Bossa F, Brunori M (1983) Primary structure of hemoglobin from trout (Salmo irideus). Amino acid sequence of the β-chain of trout Hb I. Biochim Biophys Acta 742:72–77PubMedCrossRefGoogle Scholar
  2. Bossa F, Barra D, Petruzzelli R, Martini F, Brunori M (1978) Primary structure of hemoglobin from trout (Salmo irideus). Amino acid sequence of α-chain of Hb trout I. Biochim Biophys Acta 536:298–305PubMedGoogle Scholar
  3. Brauer AW, Oman CL, Margolies MN (1984) Use of o-phthalaldehyde to reduce background during automated Edman degradation. Anal Biochem 137:134–142PubMedCrossRefGoogle Scholar
  4. Brunori M (1975) Molecular adaptation to physiological requirements: The hemoglobin System of trout. Curr Top Cell Regul 9:1–39PubMedGoogle Scholar
  5. Caruso C, Rutigliano B, Romano M, Prisco G di (1991) The hemoglobins of the cold-adapted Antarctic teleost Cygnodraco mawsoni. Biochim Biophys Acta 1078:273–282PubMedCrossRefGoogle Scholar
  6. D’Avino R, Prisco G di (1989) Hemoglobin from the Antarctic fish Notothenia coriiceps neglecta. 1. Purification and characterization. Eur J Biochem 179:699–705PubMedCrossRefGoogle Scholar
  7. D’Avino R, Caruso C, Romano M, Camardella L, Rutigliano B, Prisco G di (1989) Hemoglobin from the Antarctic fish Notothenia coriiceps neglecta. 2. Amino acid sequence of the α chain of Hb 1. Eur J Biochem 179:707–713PubMedCrossRefGoogle Scholar
  8. D’Avino R, Caruso C, Camardella L, Schininà ME, Rutigliano B, Romano M, Carratore V, Barra D, Prisco G di (1991) Anoverview of the molecular structure and functional properties of the hemoglobins of a cold-adapted Antarctic teleost. In: Prisco G di (ed) Life under extreme conditions. Biochemical adaptation. Springer, Berlin Heidelberg New York, pp 15–33Google Scholar
  9. Friedman M, Krull LH, Cavins JF (1970) The chromatographic determination of cystine and cysteine residues in proteins as S-β-(4-pyridylethyl) cysteine. J Biol Chem 245:3868–3871PubMedGoogle Scholar
  10. Giardina B, Amiconi G (1981) Measurement of binding of gaseous and nongaseous ligands to hemoglobins by conventional spectro-photometric procedures. Methods Enzymol 76:417–427PubMedCrossRefGoogle Scholar
  11. Hirs CHW (1967) Performic acid oxydation. Methods Enzymol 11:197–199CrossRefGoogle Scholar
  12. Kunzmann A, Caruso C, Prisco G di (1991) Haematological studies on a high-Antarctic fish: Bathydraco marri Norman. J Exp Mar Biol Ecol 152:243–255CrossRefGoogle Scholar
  13. Kunzmann A, Fago A, D’Avino R, Prisco G di (1992) Haematological studies on Aethotaxis mitopteryx DeWitt, a high-Antarctic fish with a single haemoglobin. Polar Biol 12:141–145CrossRefGoogle Scholar
  14. Landon M (1977) Cleavage at aspartyl-prolyl bonds. Methods Enzymol 47:145–149PubMedCrossRefGoogle Scholar
  15. Perutz MF, Brunori M (1982) Stereochemistry of cooperative effects in fish and amphibian haemoglobins. Nature 299:421–426PubMedCrossRefGoogle Scholar
  16. Prisco G, di, D’Avino R, Caruso C, Tamburrini M, Camardella L, Rutigliano B, Carratore V, Romano R (1991) The biochemistry of oxygen transport in red-blooded Antarctic fishes. In: Prisco G di, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Berlin Heidelberg New York, pp 263–281CrossRefGoogle Scholar
  17. Qvist J, Weber RE, DeVries AL, Zapol WM (1977) pH and haemoglobin oxygen affinity in blood from the Antarctic cod Dissostichus mawsoni. J Exp Biol 67:77–88PubMedGoogle Scholar
  18. Rossi Fanelli A, Antonini E, Caputo A (1958) Studies on the structure of hemoglobin. I. Physiocochemical properties of human globin. Biochim Biophys Acta 30:608–615PubMedCrossRefGoogle Scholar
  19. Shih TB, Jones R, Bonaventura J, Bonaventura C, Schneider RG (1984) Involvement of His HC3(146)β in the Bohr effect of human hemoglobin. J Biol Chem 259:967–974PubMedGoogle Scholar
  20. Tamburrini M, Brancaccio A, Ippoliti R, Prisco G di (1992) The amino acid sequence and oxygen-binding properties of the single hemoglobin of the cold-adapted Antarctic teleost Gymnodraco acuticeps. Arch Biochem Biophys 292:295–302PubMedCrossRefGoogle Scholar
  21. Wells RMG, Jokumsen A (1982) Oxygen binding properties of hemoglobins from Antarctic fishes. Comp Biochem Physiol 71B:469–473Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Rossana D’Avino
    • 1
  • Angela Fago
    • 1
  • Andreas Kunzmann
    • 2
  • Guido di Prisco
    • 1
  1. 1.Institute of Protein Biochemistry and EnzymologyC.N.R.NaplesItaly
  2. 2.Institut für PolarökologieUniversität KielKielFederal Republic of Germany

Personalised recommendations