Critical Surfaces and Horopter Curves

  • Stephen Maybank
Part of the Springer Series in Information Sciences book series (SSINF, volume 28)

Abstract

In the ambiguous case of reconstruction the points giving rise to the image correspondences lie on certain surfaces of degree two known as critical surfaces. The critical surfaces compatible with the same ambiguous set of image correspondences are closely related to each other. In this chapter the geometry underlying the ambiguous case is explored in detail. If the camera calibration is known then the intersection of a critical surface pair contains a space curve of degree three known as a horopter curve. The horopter curve is of central importance, in that many of the properties of critical surfaces arise from the properties of horopter curves.

Keywords

Lution Dinate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Helmholtz H. von 1925 Physiological Optics, vol. 3. ( Ed. J.P.C. Southall Optical Soc. America.Google Scholar
  2. Hofmann W. 1950 Das Problem der “Gefährlichen Flächen in Theorie und Praxis”. Dissertation, Fakultät für Bauwesen der Technischen Hochschule München, München, FR Germany. Published in Reihe C, No. 3 der Deutschen Geodätischen Kommission bei der Bayerischen Akademie der Wissenschaften, München 1953.Google Scholar
  3. Maybank S.J. 1990 The projective geometry of ambiguous surfaces. Phil. Trans. Royal Soc. London, Series A 332, 1–47.CrossRefADSMathSciNetGoogle Scholar
  4. Semple J.G. & Kneebone G.T. 1953 Algebraic Projective Geometry. Oxford: Clarendon Press (reprinted 1979).Google Scholar
  5. Wunderlich W. 1942 Zur Eindeutigkeitsfrage der Hauptaufgabe der Photogrammetrie. Monatsch. Math. Physik 50, 151–164.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Stephen Maybank
    • 1
  1. 1.Hirst Research CentreGEC-Marconi LimitedWembley, MiddlesexUK

Personalised recommendations