Skip to main content

Peripheral Mechanisms of Opioid Analgesia

  • Chapter
Opioids II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 104 / 2))

Abstract

Traditionally, opioids are considered to exert analgesic effects through actions within the central nervous system (CNS) (see also chaps. 31, 32, 33 and 36 of this volume). Recently, however, evidence has begun to accumulate that opioid antinociception can be brought about by activation of opioid receptors located outside the CNS. One of the earliest reports was that of Wood (1855), who showed that morphine elicited analgesic effects when applied topically to “painful areas” in the periphery. Since then there have been numerous clinical and experimental reports of similar observations. However, most of the former are merely anecdotal and many of the latter have been discounted because of their lack of demonstration of principal criteria for opioid receptor-mediated effects, in particular naloxone reversibility. Moreover, the question as to whether these effects result from a truly peripheral rather than from a central site of action (e.g., via uptake of the agent into the circulation and transport to the CNS) has been raised repeatedly. This chapter will give an overview of controlled experimental and clinical studies examining peripheral antinociceptive actions of opioids and will discuss mechanisms and potential implications for novel therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott F (1988) Peripheral and central antinociceptive actions of ethylketocyclazocine in the formalin test. Eur J Pharmacol 152:93–100

    Article  PubMed  CAS  Google Scholar 

  • Barthó L, Stein C, Herz A (1990) Involvement of capsaicin-sensitive neurones in hyperalgesia and enhanced opioid antinociception in inflammation. Naunyn Schmiedebergs Arch Pharmacol 342:666–670

    Article  PubMed  Google Scholar 

  • Bentley GA, Newton SH, Starr J (1981) Evidence for an action of morphine and the enkephalins on sensory nerve endings in the mouse peritoneum. Br J Pharmacol 73:325–332

    PubMed  CAS  Google Scholar 

  • Botticelli LJ, Cox BM, Goldstein A (1981) Immunoreactive dynorphin in mammalian spinal cord and dorsal root ganglia. Proc Natl Acad Sci USA 78:7783–7786

    Article  PubMed  CAS  Google Scholar 

  • Bullingham RES, O’Sullivan G, McQuay H, Poppleton P, Rolfe M, Evans P, Moore A (1983) Perineural injection of morphine fails to relieve postoperative pain in humans. Anesth Analg 62:164–167

    Article  PubMed  CAS  Google Scholar 

  • Bullingham RES, McQuay HJ, Moore RA (1984) Studies on the peripheral action of opioids in postoperative pain in man. Acta Anaesthesiol Belg 35 Suppl:285–290

    PubMed  Google Scholar 

  • Dahl JB, Daugaard JJ, Kristoffersen E, Johannsen HV, Dahl JA (1988) Perineuronal morphine: a comparison with epidural morphine. Anaesthesia 43:463–465

    Article  PubMed  CAS  Google Scholar 

  • Fang GF, Fields HL, Lee NM (1986) Action at the mu receptor is sufficient to explain the supraspinal analgesic effect of opiates. J Pharmacol Exp Ther 238:1039–1044

    PubMed  CAS  Google Scholar 

  • Ferreira SH, Nakamura M (1979) Prostaglandin hyperalgesia II: the peripheral analgesic activity of morphine, enkephalins and opioid antagonists. Prostaglandins 18:191–200

    Article  PubMed  CAS  Google Scholar 

  • Ferreira SH, Molina N, Vettore O (1982) Prostaglandin hyperalgesia, V: a peripheral analgesic receptor for opiates. Prostaglandins 23:53–60

    Article  PubMed  CAS  Google Scholar 

  • Ferreira SH, Lorenzetti BB, Rae GA (1984) Is methylnalorphinium the prototype of an ideal peripheral analgesic? Eur J Pharmacol 99:23–29

    Article  PubMed  CAS  Google Scholar 

  • Fields HL, Emson PC, Leigh BK, Gilbert RFT, Iversen LL (1980) Multiple opiate receptor sites on primary afferent fibres. Nature 284:351–353

    Article  PubMed  CAS  Google Scholar 

  • Follenfant RL, Hardy GW, Lowe LA, Schneider C, Smith TW (1988) Antinociceptive effects of the novel opioid peptide BW443C compared with classical opiates; peripheral versus central actions. Br J Pharmacol 93:85–92

    PubMed  CAS  Google Scholar 

  • Frank GB (1985) Stereospecific opioid receptors on excitable cell membranes. Can J Physiol Pharmacol 63:1023–1032

    Article  PubMed  CAS  Google Scholar 

  • Guillemin RT, Vargo T, Rossier J, Minick S, Ling N, Rivier C, Vale W, Bloom FE (1977) β-Endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland. Science 197:1367–1369

    Article  PubMed  CAS  Google Scholar 

  • Hardy GW, Lowe LA, Sang PY, Simpkin DSA, Wilkinson S, Follenfant RL, Smith TW (1988) Peripherally acting enkephalin analogues. I. Polar pentapeptides. J Med Chem 31:960–966

    Article  PubMed  CAS  Google Scholar 

  • Hassan AHS, Przewlocki R, Herz A, Stein C (1992) Dynorphin, a preferential ligand for kappa-opioid receptors, is present in nerve fibers and immune cells within inflamed tissue of the rat. Neurosci Lett 140:85–88

    Article  PubMed  CAS  Google Scholar 

  • Hiller JM, Simon EJ, Crain SM, Peterson ER (1978) Opiate receptors in cultures of fetal mouse dorsal root ganglia (DRG) and spinal cord: predominance in DRG neurites. Brain Res 145:396–400

    Article  PubMed  CAS  Google Scholar 

  • Holland RL, Harkin NE, Coleshaw SPK, Jones DA, Peck AW, Telekes A (1987) Dipipanone and nifedipine in cold induced pain; analgesia not due to skin warming. Br J Clin Pharmacol 24:823–826

    PubMed  CAS  Google Scholar 

  • Illes P (1989) Modulation of transmitter and hormone release by multiple neuronal opioid receptors. Rev Physiol Biochem Pharmacol 112:169–171.

    Google Scholar 

  • International Association for the Study of Pain (1986) Classification of chronic pain. Pain Suppl 3:S217

    Google Scholar 

  • Joris JL, Dubner R, Hargreaves KM (1987) Opioid analgesia at peripheral sites: a target for opioids released during stress and inflammation. Anesth Analg 66:1277–1281

    Article  PubMed  CAS  Google Scholar 

  • Karoly P, Jensen MP (1987) Multimethod assessment of chronic pain. Pergamon, New Youk, pp 42–57

    Google Scholar 

  • Kayser V, Gobeaux D, Lombard MC, Guilbaud G, Besson JM (1990) Potent and long lasting antinociceptive effects after injection of low doses of a mu-opioid receptor agonist, fentanyl, into the brachial plexus sheath of the rat. Pain 42:215–225

    Article  PubMed  CAS  Google Scholar 

  • Kosterlitz HW, Waterfield A A (1975) In vitro models in the study of structure activity relationships of narcotic analgesics. Annu Rev Pharmac Toxicol 15:2947

    Google Scholar 

  • Laduron P (1984) Axonal transport of opiate receptors in capsaicin sensitive neurones. Brain Res 294:157–160

    Article  PubMed  CAS  Google Scholar 

  • LaMotte C, Pert CB, Synder SH (1976) Opiate receptor binding in primate spinal cord: distribution and changes after dorsal root section. Brain Res 112:407–412

    Article  PubMed  CAS  Google Scholar 

  • Lembeck F, Donnerer J (1985) Opioid control of the function of primary afferent substance P fibres. Eur J Pharmacol 114:241–246

    Article  PubMed  CAS  Google Scholar 

  • Levine JD, Taiwo YO (1989) Involvement of the mu-opiate receptor in peripheral analgesia. Neuroscience 32:571–575

    Article  PubMed  CAS  Google Scholar 

  • Mays KS, Lipman JJ, Schnapp M (1987) Local analgesia without anesthesia using peripheral perineural morphine injections. Anesth Analg 66:417–420

    Article  PubMed  CAS  Google Scholar 

  • Millan MJ (1986) Multiple opioid systems and pain. Pain 27:303–347

    Article  PubMed  CAS  Google Scholar 

  • Ninkovic M, Hunt SP, Gleave JRW (1982) Localization of opiate and histamine H1-receptors in the primary sensory ganglia and spinal cord. Brain Res 241:197–206

    Article  PubMed  CAS  Google Scholar 

  • Parsons CG, Herz A (1990) Peripheral opioid receptors mediating antinociception in inflammation. Evidence for activation by enkephalin-like opioid peptides after cold water swim stress. J Pharmacol Exp Ther 255:795–802

    PubMed  CAS  Google Scholar 

  • Parsons CG, Członkowski A, Stein C, Herz A (1990) Peripheral opioid receptors mediating antinociception in inflammation. Activation by endogenous opioids and role of the pituitary-adrenal axis. Pain 41:81–93

    Article  PubMed  CAS  Google Scholar 

  • Porreca F, Mosberg HJ, Hurst R, Hruby VJ, Burks TF (1984) Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. J Pharmacol Exp Ther 230:341–348

    PubMed  CAS  Google Scholar 

  • Posner J, Moody SG, Peck AW, Rutter D, Telekes A (1990) Analgesic, central, cardiovascular and endocrine effects of the enkephalin analogue Tyr-d-Arg-Gly- Phe(4NO2)-Pro-NH2 (443C81) in healthy volunteers. Eur J Clin Pharmacol 38:213–218

    Article  PubMed  CAS  Google Scholar 

  • Przewłocki R, Gramsch C, Pasi A, Herz A (1983) Characterization and localization of immunoreactive dynorphin, a-neoendorphin, met-enkephalin and substance P in human spinal cord. Brain Res 280:95–103

    Article  PubMed  Google Scholar 

  • Przewłocki R, Hassan AHS, Lason W, Epplen C, Herz A, Stein C (1992) Gene expression and localization of opioid peptides in immune cells of inflamed tissue. Functional role in antinociception. Neuroscience 48:491–500

    Article  PubMed  Google Scholar 

  • Rios L, Jacob JJC (1982) Inhibition of inflammatory pain by naloxone and its N-methyl quaternary analogue. Life Sci 31:1209–1212

    Article  PubMed  CAS  Google Scholar 

  • Rios L, Jacob JJC (1983) Local inhibition of inflammatory pain by naloxone and its N-methyl quaternary analogue. Eur J Pharmacol 96:277–283

    Article  PubMed  CAS  Google Scholar 

  • Russell NJM, Schaible HG, Schmidt RF (1987) Opiates inhibit the discharges of fine afferent units from inflamed knee joint of the cat. Neurosci Lett 76:107–112

    Article  PubMed  CAS  Google Scholar 

  • Schiller PW, Nguyen TMD, Chung NN, Dionne G, Martel R (1990) Peripheral antinociceptive effect of an extremely μ-selective polar dermorphin analog (DALDA). In: Quirion R, Jhamandas K, Gianoulakis C (eds) The international narcotics research conference (INRC) 1989. Liss, New York, pp 53–56

    Google Scholar 

  • Shaw JS, Carroll JA, Alcock P, Main BG (1989) ICI 204448: a κ-opioid agonist with limited access to the CNS. Br J Pharmacol 96:986–992

    PubMed  CAS  Google Scholar 

  • Sibinga NES, Goldstein A (1988) Opioid peptides and opioid receptors in cells of the immune ststem. Annu Rev Immunol 6:219–249

    Article  PubMed  CAS  Google Scholar 

  • Smith TW, Buchan P, Parsons DN, Wilkinson S (1982) Peripheral antinociceptive effects of N-methyl morphine. Life Sci 31:1205–1208

    Article  PubMed  CAS  Google Scholar 

  • Stein C, Millan MJ, Herz A (1988a) Unilateral inflammation of the hindpaw in rats as a model of prolonged noxious stimulation: alterations in behavior and nociceptive thresholds. Pharmacol Biochem Behav 31:445–451

    Article  PubMed  CAS  Google Scholar 

  • Stein C, Millan MJ, Shippenberg TS, Herz A (1988b) Peripheral effect of fentanyl upon nociception in inflamed tissue of the rat. Neurosci Lett 84:225–228

    Article  PubMed  CAS  Google Scholar 

  • Stein C, Millan MJ, Yassouridis A, Herz A (1988c) Antinociceptive effects of μ- and κ-agonists in inflammation are enhanced by a peripheral opioid receptor-specific mechanism of action. Eur J Pharmacol 155:255–264

    Article  PubMed  CAS  Google Scholar 

  • Stein C, Millan MJ, Shippenberg TS, Peter K, Herz A (1989) Peripheral opioid receptors mediating antinociception in inflammation. Evidence for involvement of mu, delta and kappa receptors. J Pharmacol Exp Ther 248:1269–1275

    PubMed  CAS  Google Scholar 

  • Stein C, Gramsch C, Herz A (1990a) Intrinsic mechanisms of antinociception in inflammation. Local opioid receptors and β-endorphin. J Neurosci 10:1292–1298

    PubMed  CAS  Google Scholar 

  • Stein C, Hassan AHS, Przewłocki, R, Gramsch C, Peter K, Herz A (1990b) Opioids from immunocytes interact with receptors on sensory nerves to inhibit nociception in inflammation. Proc Natl Acad Sci USA 87:5935–5939

    Article  PubMed  CAS  Google Scholar 

  • Stein C, Comisel K, Haimerl E, Yassouridis A, Lehrberger K, Herz A, Peter K (1991) Analgesic effect of intraarticular morphine after arthroscopic knee surgery. N Engl J Med 325:1123–1126

    Article  PubMed  CAS  Google Scholar 

  • Taiwo YO, Levine JD (1991) κ- and δ-opioids block sympathetically dependent hyperalgesia. J Neurosci 11:928–932

    PubMed  CAS  Google Scholar 

  • Weihe E, Hartschuh W, Weber E (1985) Prodynorphin opioid peptides in small somatosensory primary afferents of guinea pig. Neurosci Lett 58:347–352

    Article  PubMed  CAS  Google Scholar 

  • Werz MA, Macdonald RL (1982) Heterogeneous sensitivity of cultured dorsal root ganglion neurones to opioid peptides selective for μ- and δ-opiate receptors. Nature 299:730–733

    Article  PubMed  CAS  Google Scholar 

  • Wood A (1855) New method of treating neuralgia by the direct application of opiates to the painful points. Edinburgh Med Surg J 82:265–281

    Google Scholar 

  • Yaksh TL (1988) Substance P release from knee joint afferent terminals: modulation by opioids. Brain Res 458:319–324

    Article  PubMed  CAS  Google Scholar 

  • Yong WS III, Wamsley JK, Zarbin MA, Kuhar MJ (1980) Opioid receptors undergo axonal flow. Science 210:76–77

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stein, C. (1993). Peripheral Mechanisms of Opioid Analgesia. In: Herz, A., Akil, H., Simon, E.J. (eds) Opioids II. Handbook of Experimental Pharmacology, vol 104 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77540-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77540-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77542-0

  • Online ISBN: 978-3-642-77540-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics