Skip to main content

Motivational Effects of Opioids

  • Chapter
Opioids II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 104 / 2))

Abstract

A prominent behavioral effect of opiates and other drugs of abuse is their ability to affect both mood and motivational processes. μ-Receptor agonists such as morphine or heroin produce euphoria in humans and function as positive reinforcers in a variety of species, i.e., they maintain those behaviors which lead to their administration. These agents are also characterized by their ability to function as conditioned reinforcers eliciting approach and subsequent preferences for stimuli previously associated with their administration. Furthermore, in some individuals, the reinforcing effects of these drugs may become so marked that they become the primary stimuli which motivate behavior, and the process of compulsive drug-seeking or addiction ensues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amalric M, Cline EJ, Martinez JL, Bloom FE, Koob GF (1987) Rewarding properties of β-endorphin as measured by conditioned place preference. Psychopharmacology 91:14

    Article  PubMed  CAS  Google Scholar 

  • Bals-Kubik R, Herz A, Shippenberg TS (1988) β-Endorophin-(1–27) is a naturally occurring antagonist of the reinforcing effects of opioids. Naunyn Schmiedebergs Arch Pharmacol 338:392–396

    Article  PubMed  CAS  Google Scholar 

  • Bals-Kubik R, Herz A, Shippenberg TS (1989) Evidence that the aversive effects of opioid antagonists and κ-agonists are centrally mediated. Psychopharmacology 98:203–206

    Article  PubMed  CAS  Google Scholar 

  • Bals-Kubik R, Shippenberg TS, Herz A (1990a) Involvement of μ- and γ-receptors in mediating the reinforcing effects of β-endorphin in the rat. Eur J Pharmacol 175:63–69

    Article  PubMed  CAS  Google Scholar 

  • Bals-Kubik R, Shippenberg TS, Herz A (1990b) Neuroanatomical substrates mediating the motivational effects of opioids. In: van Ree JM, Mulder AH, Wiegant VM, Greidanus TVW (eds) New leads in opioid research. Excerpta Medica, Amsterdam, pp 11–13

    Google Scholar 

  • Bechara A, van der Kooy D (1987) Kappa receptors mediate the peripheral aversive effects of opiates. Pharmacol Biochem Behav 28:227–233

    Article  PubMed  CAS  Google Scholar 

  • Belluzzi JD, Stein L (1977) Enkephalin may mediate euphoria and drive-reduction reward. Nature 266:556–558

    Article  PubMed  CAS  Google Scholar 

  • Bozarth M (1987) Intracranial self-administration procedures for the assessment of drug reinforcement. In: Bozarth M (ed) Methods of assessing the reinforcing properties of abused drugs. Springer, Berlin Heidelberg New York, pp 173–188

    Chapter  Google Scholar 

  • Bozarth MA, Wise RA (1981a) Intracranial self-administration of morphine into the ventral tegmental area in rats. Life Sci 28:551–555

    Article  PubMed  CAS  Google Scholar 

  • Bozarth MA, Wise R (1981b) Heroin reward is dependent on a dopaminergic substrate. Life Sci 29: 1881–1886

    Article  PubMed  CAS  Google Scholar 

  • Broekkamp CL, Phillips AG, Cools AR (1979) Facilitation of self-stimulation behavior following intracerebral microinjection of opioids into the ventral tegmental area. Pharmacol Biochem Behav 11:289–295

    Article  PubMed  CAS  Google Scholar 

  • Brown EE, Finlay JM, Wong JTF, Damsma G, Fibiger HC (1991) Behavioral and neurochemical interactions between cocaine and buprenorphine: implications for the pharmacotherapy of cocaine abuse. J Pharmacol Exp Ther 256: 119–126

    PubMed  CAS  Google Scholar 

  • Carboni E, Imperato A, Perezzanil, DiChiara G (1989a) Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of free moving rats. Neuroscience 28:653–661

    Article  PubMed  CAS  Google Scholar 

  • Carboni E, Acquas E, Frau R, DiChiara G (1989b) Differential inhibitory effects of a 5-HT3 antagonist on drug-induced stimulation of dopamine release. Eur J Pharmacol 164:515–519

    Article  PubMed  CAS  Google Scholar 

  • Carboni E, Acquas E, Leone P, DiChiara G (1989c) 5-HT3 receptor antagonists block morphine- and nicotine- but not amphetamine-induced reward. Psychopharmacology 97:175–178

    Article  PubMed  CAS  Google Scholar 

  • Carr GD, Fibinger HC, Phillips AG (1989) Conditioned place preference as a measure of drug reward. In: Liebman JM, Cooper SJ (eds) The neuropharmacological basis of reward. Clarendon, Oxford, p 264

    Google Scholar 

  • Chavkin C, James IF, Goldstein A (1982) Dynorphin is a specific endogenous ligand of the κ-opioid receptor. Science 215:413–415

    Article  PubMed  CAS  Google Scholar 

  • Cotton R, Giles MG, Miller L, Shaw JS, Timms D (1984) ICI 174,864: a highly selective antagonist for the opioid γ-receptor. Eur J Pharmacol 97:331–332

    Article  PubMed  CAS  Google Scholar 

  • DiChiara G, Imperato A (1988a) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the meso limbic system of freely-moving rats. Proc Natl Acad Sci USA 85:5274–5278

    Article  CAS  Google Scholar 

  • DiChiara G, Imperato A (1988b) Opposite effects of μ- and κ-opioid agonists on dopamine release in the nucleus accumbens and dorsal caudate of freely moving rats. J Pharmacol Exp Ther 244:1067–1080

    CAS  Google Scholar 

  • Dixon DM, Traynor JR (1990) Formation of [Leu5]enkephalin from dynorphin A (1–8) by rat central nervous tissue in vitro. J Neurochem 54:1379–1385

    Article  PubMed  CAS  Google Scholar 

  • Downs DA, Woods JH (1976) Naloxone as a negative reinforcer in rhesus monkeys: effects of dose, schedule, and narcotic regimen. Pharmacol Rev 27:397–436

    Google Scholar 

  • Dworkin SI, Guerin GF, Conchita CO, Goeders NE, Smith JE (1988) Lack of an effect of 6-hydroxydopamine lesions of the nucleus accumbens on intravenous morphine self-administration. Pharmacol Biochem Behav 30:1051–1057

    Article  PubMed  CAS  Google Scholar 

  • Dymshitz J, Lieblich I (1987) Opiate reinforcement and naloxone aversion, as revealed by place preference paradigm, in two strains of rats. Psychopharmacology 92:473–477

    Article  PubMed  CAS  Google Scholar 

  • Esposito RU, Porrino U, Seeger TF (1989) Brain stimulation reward measurement and mapping by psychophysical techniques and quantitative 2-(14C)deoxyglucose autoradiography. In: Bozarth MA (ed) Methods of assessing the reinforcing properties of abused drugs. Springer, Berlin Heidelberg New York, pp 421–447

    Google Scholar 

  • Gaiardi M, Bartoletti M, Bacci A, Gubellini C, Costa M (1991) Role of repeated exposure to morphine in determining its affective properties: place and taste conditioning studies in rats. Psychopharmacology 103:183–187

    Article  PubMed  CAS  Google Scholar 

  • Glimcher PW, Giovino AA, Margolin DH, Hoebel BG (1984) Endogenous opiate reward induced by an enkephalin inhibitor, thiorphan injected into the ventral midbrain behavioral. Neuroscience 98:262–268

    CAS  Google Scholar 

  • Goeders NE, Lane JD, Smith JE (1984) Self-administration of methionine enkephalin into the nucleus accumbens. Pharmacol Biochem Behav 20:451–455

    Article  PubMed  CAS  Google Scholar 

  • Grabowski J, Cherek DR (1983) Conditioning factors in opiate dependence. In: Smith JD, Lane S (eds) The neurobiology of opiate reward processes. Elsevier, Amsterdam, pp 175–210

    Google Scholar 

  • Grevert P, Goldstein A (1977) Effects of naloxone on experimentally induced ischemic pain and on mood in human subjects. Proc Natl Acad Sci USA 74:1291–1294

    Article  PubMed  CAS  Google Scholar 

  • Grevert P, Goldstein A (1978) Endorphins: naloxone fails to alter experimental pain or mood in humans. Science 199:1093–1095

    Article  PubMed  CAS  Google Scholar 

  • Gysling K, Wang RY (1983) Morphine-induced activation of A10 dopamine neurons in the rat. Brain Res 277:119–127

    Article  PubMed  CAS  Google Scholar 

  • Herz A, Shippenberg TS (1989) Motivational effects of opioids: neurochemical and neuroanatomical substrates. In: Goldstein A (ed) Molecular and cellular aspects of the drug addictions. Springer, Berlin Heidelberg New York, pp 111–141

    Chapter  Google Scholar 

  • Hoffman DC, Benninger RJ (1986) Feeding behaviour in rats is differentially affected by pimozide treatment depending on prior experience. Pharmacol Biochem Behav 24:259–262

    Article  PubMed  CAS  Google Scholar 

  • Hoffmeister F (1979) Preclinical evaluation of reinforcing and aversive properties of analgesics. In: Beers RF, Bassett EG (eds) Mechanisms of pain and analgesic compounds. Raven, New York, pp 447–466

    Google Scholar 

  • Hollister LE, Johnson K, Boukhabza D, Gillepsie HK (1981) Aversive effects of naltrexone in subjects not dependent on opiates. Drug Alcohol Depend 8:37–41 Hubner CB, Koob GF (1987) Ventral pallidal lesions produce decreases in cocaine and heroin self-administration in the rat. Proc Soc Neurosci 13:1717

    Google Scholar 

  • Iwamoto ET (1988) Dynorphin A [1–17] induces “reward” in rats in the place conditioning paradigm. Life Sci 43:503–508

    Article  PubMed  CAS  Google Scholar 

  • Jeziorski M, White FJ (1989) Electrophysiological effects of selective opioid receptor agonists on AlO dopamine (DA) neurons. Soc Neurosci Abstr 15:1001

    Google Scholar 

  • Katz JC, Goldberg SR (1987) Second-order schedules of drug injection. In: Bozarth MA (ed) Methods of assessing the reinforcing properties of abused drugs. Springer, Berlin Heidelberg New York, pp 105–117

    Chapter  Google Scholar 

  • Katz RJ, Gormezano G (1979) A rapid and inexpensive technique for assessing the reinforcing effects of opiate drugs. Pharmacol Biochem Behav 11:231–233

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Goeders NE (1989) Neuroanatomical substrates of drug selfadministration. In: Cooper SJ, Lieberman JM (eds) The neuropharmacological basis of reward. Clarendon, Oxford, pp 214–263

    Google Scholar 

  • Koob GF, Pettit HO, Ettenberg A, Bloom FE (1984) Effects of opiate antagonists and their quaternary derivatives on heroin self-administration in the rat. J Pharmacol Exp Ther 229:481–485

    PubMed  CAS  Google Scholar 

  • Koob GF, Le HT, Creese I (1987) The DH1 dopamine receptor antagonist SCH 23390 increases cocaine self-administration in the rat. Neurosci Lett 79:315–320

    Article  PubMed  CAS  Google Scholar 

  • Kornetsky C, Esposito RU (1979) Euphorigenic drugs: effects on the reward pathways of the brain. Fed Proc 38:2473–2476

    PubMed  CAS  Google Scholar 

  • Lahti RA, Mickelson MM, McCall JM, von Voightlander PF (1985) [3H]-U69593: a highly selective ligand for the κ-opioid receptor. Eur J Pharmacol 109:281–284

    Article  PubMed  CAS  Google Scholar 

  • Lieblich I, Cohen E, Beiles A (1978) Selection for high and low rates of selfstimulation in rats. Physiol Behav 32:1041–1043

    Google Scholar 

  • Magnan J, Paterson SJ, Tavani A, Kosterlitz HW (1982) The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties. Naunyn Schmiedebergs Arch Pharmacol 319:197–205

    Article  PubMed  CAS  Google Scholar 

  • Mosberg HI, Hurst R, Hruby VJ, Gee K, Akiyama K, Yamamura HI, Galligan JJ, Burks TF (1983) Bis-penicillamine enkephalins possess highly unproved specificity toward delta opioid receptors. Proc Natl Acad Sci USA 80:5871

    Article  PubMed  CAS  Google Scholar 

  • Mucha RF, Herz A (1985) Motivational properties of κ- and μ-opioid receptor agonists studied with place and taste preference conditioning procedure. Psychopharmacology 86:274–280

    Article  PubMed  CAS  Google Scholar 

  • Mucha RF, Iversen SD (1984) Reinforcing properties of morphine and naloxone revealed by conditioned place preferences: a procedural examination. Psychopharmacology 82:241–247

    Article  PubMed  CAS  Google Scholar 

  • Mucha RF, Millan MJ, Herz A (1985) Aversive properties of naloxone in nondependent (naive) rats may involve blockade of central β-endorphin. Psychopharmacology 86:281–285

    Article  PubMed  CAS  Google Scholar 

  • Nakajima S, McKenzie GM (1986) Reduction of the rewarding effect of brain stimulation by blockade of dopamine D1 receptor with SCH 23390. Pharmacol Biochem Behav 24:919–923

    Article  PubMed  CAS  Google Scholar 

  • Nakajima S, Wise RA (1987) Heroin self-administration in the rat suppressed by SCH 23390. Soc Neurosci Abstr 13:1545

    Google Scholar 

  • Nomikos GG, Spyraki C, Galanopoulou P, Papadopoulou Z (1986) Amphetamine and morphine induced place preference in rats with 5,7-dihydroxytryptamine lesions of the nucleus accumbens. Psychopharmacology 89:26

    Google Scholar 

  • Olds ME (1982) Reinforcing effects of morphine in the nucleus accumbens. Brain Res 237:429–440

    Article  PubMed  CAS  Google Scholar 

  • Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions. J Comp Physiol Psychol 47:419–427

    Article  PubMed  CAS  Google Scholar 

  • Olds J, Travis RP (1960) Effects of chlorpromazine, meprobamate, pentobarbital and morphine on self-stimulation. J Pharmacol Exp Ther 128:397–404

    PubMed  CAS  Google Scholar 

  • Pettit HO, Ettenberg A, Bloom FE, Koob GF (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin selfadministration in rats. Psychopharmacology 84:167–173

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer A, Brantl V, Herz A, Emrich HG (1986) Psychotomimesis mediated by κ opiate receptors. Science 233:774–776

    Article  PubMed  CAS  Google Scholar 

  • Phillips AG, Le Paine FG (1980) Reinforcing effects of morphine microinjection into the ventral tegmental area. Pharmacol Biochem Behav 12:965–968

    Article  PubMed  CAS  Google Scholar 

  • Roques B, Fournie-Kaluski M, Soroca E, Lecomte J, Malfroy B, Llorens C, Schwartz JC (1980) Thiorphan shows antinociceptive activity in mice. Nature 288:286–288

    Article  PubMed  CAS  Google Scholar 

  • Schoffelmeer ANM, Yao YH, Gioannini TL, Hiller JM, Ofri D, Roques BP, Simon EJ (1990) Cross-linking of human 125I β-endorphin to opioid receptors in rat striatal membranes: biochemical evidence for the existence of a μ/δ) opioid receptor complex. J Pharmacol Exp Ther 253:419–426

    PubMed  CAS  Google Scholar 

  • Shearman G, Hynes M, Fielding S, Lal H (1977) Clonidine self-administration in the rat: a comparison with fentanyl self-administration. Pharmacologist 19: 171–178

    Google Scholar 

  • Shippenberg TS, Herz A (1988) Motivational effects of opioids: influence of D-l versus D-2 receptor antagonists. J Pharmacol 151:233–242

    CAS  Google Scholar 

  • Shippenberg TS, Bals-Kubik R, Herz A (1987) Motivational properties of opioids: evidence that an activation of δ-receptors mediates reinforcement processes. Brain Res 436:234–239

    Article  PubMed  CAS  Google Scholar 

  • Shippenberg TS, Emmett-Oglesby MW, Herz A (1988a) Tolerance and selective cross-tolerance to the motivational effects of opioids. Psychopharmacology 96:110–115

    Article  PubMed  CAS  Google Scholar 

  • Shippenberg TS, Stein C, Huber A, Herz A (1988b) Motivational effects of opioids in an animal model of prolonged inflammatory pain: alteration in the effects of κ- but not μ-opioid agonists. Pain 35:179–186

    Article  PubMed  CAS  Google Scholar 

  • Shippenberg TS, Bals-Kubik R, Herz A (1991a) Neuroanatomical substrates mediating the aversive effects of D-l dopamine receptor antagonists. Psychopharmacology 103:209–214

    Article  PubMed  CAS  Google Scholar 

  • Shippenberg TS, Herz A, Spanagel R, Bals-Kubik R (1991b) Neural substrates mediating the motivational effects of opioids. Bioi Psydiatry 2:33–35

    Google Scholar 

  • Shook JE, Kazmierski W, Wire W, Lemcke PK, Hruby VJ, Burks TF (1988) Opioid receptor selectivity of β-endorphin in vitro and in vivo: μ, δ and ε receptors. J Pharmacol Exp Ther 246: 1018

    PubMed  CAS  Google Scholar 

  • Smith JE, Lane JD (1983) Brain neurotransmitter turnover correlated with morphine self-administration. In: Smith JE, Lane JD (eds) The neurobiology of opiate reward processes. Elsevier, Amsterdam, pp 361–402

    Google Scholar 

  • Smith JE, Guerin GF, Co C, Barr TS, Lane JD (1985) Effects of 6–OHDA lesions of the central medical nucleus accumbens on rat intravenous morphine selfadministration. Pharmacol Biochem Behav 23:843–849

    Article  PubMed  CAS  Google Scholar 

  • Smith JE, Shulz K, Co C, Goeders NE, Dworkin ST (1987) Effects of 5,7- dihydroxytryptamine lesions of the cucleus accumbens on rat intravenous morphine self-administration. Pharmacol Biochem Behav 26:607–612

    Article  PubMed  CAS  Google Scholar 

  • Spanagel R, Herz A, Shippenberg TS (1990a) The influence of opioid peptides on dopamine release in the nucleus accumbens: an in-vivo microdialysis study. J Neurochem 55:1734–1740

    Article  PubMed  CAS  Google Scholar 

  • Spanagel R, Herz A, Shippenberg TS (1990b) Identification of the opioid receptor types mediating β-endorphin-induced alterations in dopamine release in the nucleus accumbens. Eur J Pharmacol 190:177–184

    Article  PubMed  CAS  Google Scholar 

  • Spanagel R, Herz A, Shippenberg TS (1992) Opposing tonically active endogenous opioid systems modulate the mesolimbic dopaminergic pathway. Proc Natl Acad Sci (No 4) (in press)

    Google Scholar 

  • Spealman RD, Goldberg SR (1978) Drug self-administration by laboratory animals: control by schedules of reinforcement. Annu Rev Pharmacol Toxicol 18:313–339

    Article  PubMed  CAS  Google Scholar 

  • Spyraki C, Fibiger HC (1988) A role of the mesolimbic dopamine system in the reinforcing properties of diazepam. Psychopharmacology 18:133–137

    Article  Google Scholar 

  • Spyraki C, Fibiger HC, Phillips AG (1982) Dopaminergic substrates of amphetamine-induced place preference conditioning. Brain Res 253:185–193

    Article  PubMed  CAS  Google Scholar 

  • Spyraki C, Fibiger HC, Phillips AG (1983) Attenuation of heroin reward in rats by disruption of the meso limbic dopamine system. Psychopharmacology 79:278–283

    Article  PubMed  CAS  Google Scholar 

  • Stapleton JM, Lind MD, Merriman VJ, Bozarth MA, Reid LD (1979) Affective consequences and subsequent effects on morphine self-administration of D-Ala2-methionine enkephalin. Physiol Psychol 7:146–152

    CAS  Google Scholar 

  • Steinfels GF, Young AG, Khazan N (1982) Self-administration of nalbuphine, butorphanol and pentazocine by morphine post-addict rats. Pharmacol Biochem Behav 16:167–171

    Article  PubMed  CAS  Google Scholar 

  • Stevens KE, Shiotsu G, Stein C (1991) Hippocampal μ-receptors mediate opioid reinforcement in the CA3 region. Brain Res 545:8–16

    Article  PubMed  CAS  Google Scholar 

  • Stolerman IP (1985) Motivational effects of opioids evidence on the role of endorphins in mediating reward or aversion. Pharmacol Biochem Behav 23:877–881

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9:321–353

    Article  PubMed  CAS  Google Scholar 

  • Tachibana S, Oshino H, Arakawa Y, Nakzawa T, Araki S, Kaneko T, Yamatsu K, Miyagawa H (1988) Design and synthesis of metabolically stable analogs of dynorphin-A and their analgesic characteristics. In: Naito Foundation, 22–24 October 1987. University of Tokyo Press, Tokyo

    Google Scholar 

  • Vaccarino FJ, Floyd EB, Koob GF (1985a) Blockade of nucleus accumbens opiate receptors attenuates intravenous heroin reward in the rat. Psychopharmacology 86:37–42

    Article  PubMed  CAS  Google Scholar 

  • Vaccarino FJ, Pettit HO, Bloom FE, Koob GF (1985b) Effects of intracerebroventricular administration of methyl-naloxonium chloride on heroin selfadministration in the rat. Pharmacol Biochem Behav 23:495–498

    Article  PubMed  CAS  Google Scholar 

  • Van der Kooy D, Mucha RF, O’Shaughnessy M, Buceneiks P (1982) Reinforcing effects of brain microinjections of morphine revealed by conditioned place preference. Brain Res 243:107–117

    Article  PubMed  Google Scholar 

  • Van Ree JM, Smyth DG, Colpaert FC (1979) Dependence creating properties of lipotropin C-fragment (β-endorphin): evidence for its internal control of behaviour. Life Sci 24:495–502

    Article  PubMed  Google Scholar 

  • Von Voightlander PF, Lahti RA, Ludens IH (1983) U50,488H: a selective and structurally novel non-mu (kappa) opioid agonist. J Pharmacol Exp Ther 224:7–11

    Google Scholar 

  • White NM, Packard MG, Hiroi N (1991) Place conditioning with dopamine D1 and D2 agonists injected peripherally or into the nucleus accumbens. Psychopharmacology 103:271–276

    Article  PubMed  CAS  Google Scholar 

  • Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 40:191–225

    Article  PubMed  CAS  Google Scholar 

  • Wolf P, Olpe HR, Avrith D, Haas HL (1978) GABAergic inhibition of neurons in the ventral tegmental area. Experientia 34:73–74

    Article  PubMed  CAS  Google Scholar 

  • Woods IH, Young AM, Herling S (1982) Classification of narcotics on the basis of their reinforcing, discriminative and antagonist effects in rhesus monkeys. Fed Proc 41:221–227

    PubMed  CAS  Google Scholar 

  • Zito KA, Vickers G, Roberts DCS (1985) Disruption of cocaine and heroin selfadministration following kainic acid lesions of the nucleus accumbens. Pharmacol Biochem Behav 23: 1029–1036

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shippenberg, T.S. (1993). Motivational Effects of Opioids. In: Herz, A., Akil, H., Simon, E.J. (eds) Opioids II. Handbook of Experimental Pharmacology, vol 104 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77540-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77540-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77542-0

  • Online ISBN: 978-3-642-77540-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics