Skip to main content

Opioids in the Neurohypophysial System

  • Chapter
Opioids II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 104 / 2))

  • 269 Accesses

Abstract

The reported effects of morphine on antidiuresis in the rat provided the first indication that the secretions of the neurohypophysial system could be regulated by opioids (De Bodo 1944). Amongst the neuroendocrine systems it is in the neurohypophysial system that the actions of opioids and the physiological functions of the endogenous peptides are now best understood. Opioid peptides are intrinsic to the neurohypophysial system. This was first suggested by the extraction of leu-enkephalin from the combined neural and intermediate lobes of the rat pituitary (Rossier et al. 1977). Confirmation of a hypothalamic enkephalin pathway terminating specifically in the neural lobe was obtained using immunocytochemistry and extraction of leu-enkephalin from this isolated tissue (Rossier et al. 1977, 1980). Proopiomelanocortin (POMC)-derived β-endorphin was found to be confined to intermediate and anterior pituitary lobes (Bloom et al. 1977). Extraction of dynorphin peptides from neurointermediate pituitary was reported around this time (Goldstein and Ghazarossian 1980), as was the presence of dynorphin immunoreactive fibres confined to the neural lobe (Watson et al. 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe J, Okamura H, Makino S, Yanaihara N, Ibata Y (1987) Immunocytochemical distribution of [Met]enkephalin-Arg-Gly-Leu immunoreactivity in the rat diencephalon. Brain Res Bull 19:735–741

    PubMed  CAS  Google Scholar 

  • Abrahams JM, Boura ALA, Evans RG, Johnston CI, Olley JE (1986) The effects of N-cyclopropylmethyl-19-isopentyl-nororvinol (M320), a potent agonist at κ- and μ-opiate receptors, on urine excretion of rats. Br J Pharmacol 89:759–767

    PubMed  CAS  Google Scholar 

  • Adachi T, Hisano S, Daikoku S (1985) Intragranular colocalisation of immunoreactive methionine-enkephalin and oxytocin within the nerve terminals in the posterior pituitary. J Histochem Cytochem 33:891–899

    PubMed  CAS  Google Scholar 

  • Adamson P, Xiang J-Z, Mantzourides T, Brammer MJ, Campbell IC (1989) Presynaptic α2-adrenoceptor and κ-opiate receptor occupancy promotes closure of neuronal (N-type) calcium channels. Eur J Pharmacol 174:63–70

    Google Scholar 

  • Anhut H, Knepel W (1982) Release of dynorphin-like immunoreactivity of rat neurohypophysis in comparison to vasopressin after various stimuli in vitro and in vivo. Neurosci Lett 31:159–164

    PubMed  CAS  Google Scholar 

  • Arnauld E, Cirino M, Layton BS, Renaud LP (1983) Contrasting actions of amino acids, acetylcholine, noradrenaline and leucine enkephalin on the excitability of supraoptic vasopressin-secreting neurons. Neuroendocrinology 36:187–196

    PubMed  CAS  Google Scholar 

  • Ashton N, Balment RJ, Blackburn TP (1990) κ-Opioid-receptor agonists modulate the renal excretion of water and electrolytes in anaesthetised rats. Br J Pharmacol 99: 181–185

    PubMed  CAS  Google Scholar 

  • Atweh SF, Kuhar MJ (1983) Distribution and physiological significance of opioid receptors in the brain. Br Med Bull 39:47–52

    PubMed  CAS  Google Scholar 

  • Aziz LS, Forsling ML, Woolf CJ (1981) The effect of intracerebroventricular injections of morphine on vasopressin release in the rat. J Physiol (Lond) 311:401–409

    CAS  Google Scholar 

  • Bicknell RJ (1988) Optimising release from peptide hormone secretory nerve terminals. J Exp Biol 139:51–65

    PubMed  CAS  Google Scholar 

  • Bicknell RJ (1991) Opioid modulatory mechanisms in the neurohypophysis. In: Jard S, Jamison R (eds) Vasopressin, vol 208. INSERM, Libbey Eurotext, Montrouge, pp 237–244

    Google Scholar 

  • Bicknell RJ, Leng G (1982) Endogenous opiates regulate oxytocin but not vasopressin secretion from the neurohypophysis. Nature 298: 161–162

    PubMed  CAS  Google Scholar 

  • Bicknell RJ, Ingram CD, Leng G (1983) Oxytocin release is inhibited by opiates from the neural lobe, not those from the intermediate lobe. Neurosci Lett 43:227–230

    PubMed  CAS  Google Scholar 

  • Bicknell RJ, Chapman C, Leng G (1985a) Effects of opioid agonists and antagonists on oxytocin and vasopressin release in vitro. Neuroendocrinology 41:142–148

    PubMed  CAS  Google Scholar 

  • Bicknell RJ, Chapman C, Leng G (1985b) Neurohypophysial opioids and oxytocin secretion: source of inhibitory opioids. Exp Brain Res 60: 192–196

    PubMed  CAS  Google Scholar 

  • Bicknell RJ, Leng G, Lincoln OW, Russell RJ (1988a) Naloxone excites oxytocin neurones in the supraoptic nucleus of lactating rats after chronic morphine treatment. J Physiol 396:297–317

    PubMed  CAS  Google Scholar 

  • Bicknell RJ, Leng G, Russell JA, Dyer RG, Mansfield S, Zhao B-G (1988b) Hypothalamic opioid mechanisms controlling oxytocin neurones during parturition. Brain Res Bull 20:743–749

    PubMed  CAS  Google Scholar 

  • Bicknell RJ, Zhao B-G, Chapman C, Heavens RP, Sirinathsinghji DJS (1988c) Opioid inhibition of secretion from oxytocin and vasopressin nerve terminals following selective depletion of neurohypophysial catecholamines. Neurosci Lett 93:281–286

    PubMed  CAS  Google Scholar 

  • Bicknell RJ, Luckman SM, Inenaga K, Mason WT, Hatton GI (1989) β-Adrenergic and opioid receptors on pituicytes cultured from adult rat neurohypophysis: regulation of cell morphology. Brain Res Bull 22:379–388

    PubMed  CAS  Google Scholar 

  • Bisset GW, Chowdry HS, Feldberg W (1978) Release of vasopressin by enkephalin. Br J Pharmacol 62:370–371

    PubMed  CAS  Google Scholar 

  • Blackburn TP, Borkowski KR, Firend J, Rance MJ (1986) On the mechanisms of κ-opioid-induced diuresis. Br J Pharmacol 89:593–598

    PubMed  CAS  Google Scholar 

  • Bloom F, Battenberg ELF, Rossier J, Ling N, Leppaluoto J, Vargo TM, Guillemin R (1977) Endorphins are located in the intermediate and anterior lobes of the pituitary gland, not in the neurohypophysis. Life Sci 20:43–48

    PubMed  CAS  Google Scholar 

  • Bondy CA, Gainer H, Russell JT (1988) Dynorphin A inhibits and naloxone increases the electrically stimulated release of oxytocin but not vasopressin from the terminals of the neural lobe. Endocrinology 122:1321–1327

    PubMed  CAS  Google Scholar 

  • Brady LS, Herkenham M (1987) Dehydration reduces κ-opiate receptor binding in the neurohypophysis of the rat. Brain Res 425:212–217

    PubMed  CAS  Google Scholar 

  • Brady LS, Rothman RB, Herkenham M (1988) Physiological regulation of neurohypophyseal κ-opiate receptors. Brain Res 443:398–402

    PubMed  CAS  Google Scholar 

  • Bridges RS, Ronsheim PM (1987) Immunoreactive beta-endorphin concentrations in brain and plasma during pregnancy in rats: possible modulation by progesterone and estradiol. Neuroendocrinology 45:381–388

    PubMed  CAS  Google Scholar 

  • Bunn SJ, Hanley MR, Wilkin GP (1985) Evidence for a kappa-opioid receptor on pituitary astrocytes: an autoradiographic study. Neurosci Lett 55:317–323

    PubMed  CAS  Google Scholar 

  • Carter DA, Lightman SL (1987a) Temporal changes in the activity of endogenous opioid mechanisms regulating oxytocin secretion in saline-loaded rats. Neurosci Lett 82: 191–195

    PubMed  CAS  Google Scholar 

  • Carter DA, Lightman SL (1987b) Opioid control of oxytocin secretion: evidence of distinct regulatory actions of two opiate receptor types. Life Sci 40:2289–2296

    PubMed  CAS  Google Scholar 

  • Carter DA, Williams TDM, Lightman SL (1986) A sex difference in endogenous opioid regulation of the posterior pituitary response to stress in the rat. J Endocrinol 111:239–244

    PubMed  CAS  Google Scholar 

  • Castanas E, Bourhim N, Giraud P, Boudouresque F, Cantau P, Oliver C (1985) Interaction of opiates with opioid binding sites in the bovine adrenal medulla. II. Interaction with κsites. J Neurochem 45:688–699

    PubMed  CAS  Google Scholar 

  • Clarke G, Patrick G (1983) Differential inhibitory action by morphine on the release of oxytocin and vasopressin from the isolated neural lobe. Neurosci Lett 39: 175–180

    PubMed  CAS  Google Scholar 

  • Clarke G, Wood P, Merrick L, Lincoln DW (1979) Opiate inhibition of peptide release from the neurohumoral terminals of hypothalamic neurones. Nature 282:746–748

    PubMed  CAS  Google Scholar 

  • Cuello AC (1983) Central distribution of opioid peptides. Br Med Bull 39: 11–16

    PubMed  CAS  Google Scholar 

  • De Bodo RC (1944) The antidiuretic action of morphine, and its mechanism. J Pharmacol Exp Ther 82:74–85

    Google Scholar 

  • Dencker Christensen J, Fjalland B (1982) Lack of effect of opiates on release of vasopressin from isolated rat neurohypophysis. Acta Pharmacol Toxicol (Copenh) 50:113–116

    Google Scholar 

  • Duke HN, Pickford M, Watt JA (1951) The antidiuretic action of morphine: its site and mode of action in the hypothalamus of the dog. Q J Exp Physiol 36:149–158

    CAS  Google Scholar 

  • Evans RG, Olley JE (1988) Comparison of the oxytocin response to waterdeprivation, hyperosmolarity and administration of morphine or naltrexone in lactating and virgin female rats. Neurosci Lett 94: 177 -181

    PubMed  CAS  Google Scholar 

  • Falke N (1988) Dynorphin (1–8) inhibits stimulated release of oxytocin but not vasopressin from isolated neurosecretory endings of the rat neurohypophysis. Neuropeptides 11: 163–167

    PubMed  CAS  Google Scholar 

  • Falke N, Martin R (1985) Opioid binding in a rat neurohypophysial fraction enriched in oxytocin and vasopressin nerve endings. Neurosci Lett 61:37–41

    PubMed  CAS  Google Scholar 

  • Falke N, Martin R (1988) Opiate binding differentially associated with oxytocin and vasopressin nerve endings from porcine neurohypophyses. Exp Brain Res 70:145–154

    PubMed  CAS  Google Scholar 

  • Finley JCW, Maderdrut JL, Petrusz P (1981) The immunocytochemical localization of enkephalin in the central nervous system of the rat. J Comp Neurol 198:541–565

    PubMed  CAS  Google Scholar 

  • Flanagan LM, Verbalis JG, Stricker EM (1988) Naloxone potentiation of effects of cholecystokinin and lithium chloride on oxytocin secretion, gastric motility and feeding. Neuroendocrinology 48:688–673

    Google Scholar 

  • Forsling ML, Matziari C, Aziz L (1988) A comparison of the vasopressin response of rats to intraperitoneal and intravenous administration of hypertonic saline, and the effect of opioid and aminergic antagonists. J Endocrinol 116:217–224

    PubMed  CAS  Google Scholar 

  • Fuchs A-R, Saito S (1971) Pituitary oxytocin and vasopressin content of pregnant rats before, during and after parturition. Endocrinology 88:574–578

    PubMed  CAS  Google Scholar 

  • Gaymann W, Martin R (1987) A re-examination of the localisation of immunoreactive dynorphin (1–8), [Leu]enkephalin and [Met]enkephalin in the rat neurohypophysis. Neuroscience 20:1069–1080

    PubMed  CAS  Google Scholar 

  • Gerstberger R, Barden N (1986) Dynorphin 1–8 binds to opiate kappa receptors in the neurohypophysis. Neuroendocrinology 42:376–383

    PubMed  CAS  Google Scholar 

  • Goldstein A, Ghazarossian VE (1980) Immunoreactive dynorphin in pituitary and brain. Proc Natl Acad Sci USA 77:6207–6210

    PubMed  CAS  Google Scholar 

  • Grell S, Dencker Christensen J, Fjalland B (1988) The influence of morphine and naloxone on plasma oxytocin concentration in the rat. Pharmacol Toxicol 63:274–276

    PubMed  CAS  Google Scholar 

  • Grell S, Fjalland B, Christensen JD (1989) Biphasic effect of a κ-opioid receptor agonist on plasma oxytocin levels in rats. Eur J Pharmacol 166:41–48

    PubMed  CAS  Google Scholar 

  • Günther W, Martin R (1989) Localisation of preproenkephalin mRNA-synthesizing neurons in the bovine hypothalamus in in situ hybridisation. In: Cros J, Meunier J-C, Hamon M (eds) Advances in the biosciences. Pergamon, Oxford, pp 297–300

    Google Scholar 

  • Haaf JAT, Maigret C, Andringa-Bakker EAD, van Wimersma Greidanus TB (1987) Dynorphin-(I-13) is a potent in vivo suppressor of vasopressin levels in the rat. Acta Endocrinol (Copenh) 114:96–101

    CAS  Google Scholar 

  • Haldar J, Bade V (1981) Involvement of opioid peptides in the inhibition of oxytocin release by heat stress in lactating mice. Proc Soc Exp Biol Med 168:10–14

    PubMed  CAS  Google Scholar 

  • Haldar J, Sawyer WH (1978) Inhibition of oxytocin release by morphine and its analogs. Proc Soc Exp Biol Med 157:476–480

    PubMed  CAS  Google Scholar 

  • Hartman RD, Rosella-Dampman LE, Emmert SE, Summy-Long JY (1986a) Inhibition of release of neurohypophysial hormones by endogenous opioid peptides in pregnant and parturient rats. Brain Res 382:353–359

    Google Scholar 

  • Hartman RD, Rosella-Dampman LM, Emmert SE, Summy-Long JY (1986b) Ontogeny of opioid inhibition of vasopressin and oxytocin release in response to osmotic stimulation. Endocrinology 119: 1–11

    PubMed  CAS  Google Scholar 

  • Hartman RD, Rosella-Dampman LM, Summy-Long JY (1987) Endogenous opioid peptides inhibit oxytocin release in the lactating rat after dehydration and urethane. Endocrinology 121:536–543

    PubMed  CAS  Google Scholar 

  • Hatton GI (1990) Emerging concepts of structure-function dynamics in adult brain: the hypothalamo-neurohypophysial system. Prog Neurobiol 34:437–504

    PubMed  CAS  Google Scholar 

  • Herkenham M, Rice KC, Jacobson AE, Rothman RB (1986) Opiate receptors in rat pituitary are confined to the neural lobe and are exclusively kappa. Brain Res 382:365–371

    PubMed  CAS  Google Scholar 

  • Higuchi T, Honda K, Takano S, Negoro H (1988) Reduced oxytocin response to osmotic stimulus and immobilization stress in lactating rats. J Endocrinol 116:225–230

    PubMed  CAS  Google Scholar 

  • Höllt V, Haarmann I, Seizinger BR, Herz A (1981) Levels of dynorphin-(I-13) immunoreactivity in rat neurointermediate pituitaries are concomitantly altered with those of leucine enkephalin and vasopressin in response to various endocrine manipulations. Neuroendocrinology 33:333–339

    PubMed  Google Scholar 

  • Inenaga K, Imura H, Yanaihra N, Yamashita Y (1990) Kappa-selective opioid receptor agonists leumorphine and dynorphin inhibit supraoptic neurons in rat hypothalamic slice preparations. J Neuroendocrinol 2:389–395

    PubMed  CAS  Google Scholar 

  • Iversen LL, Iversen SD, Bloom FE (1980) Opiate receptors influence vasopressin release from nerve terminals in rat neurohypophysis. Nature 284:350–351

    PubMed  CAS  Google Scholar 

  • Jessop D, Sidhu R, Lightman SL (1990) Osmotic regulation of methionine enkephalin in the posterior pituitary of the rat. Brain Res 516:41–45

    PubMed  CAS  Google Scholar 

  • Jones SA, Summerlee AJS (1986a) Effects of porcine relaxin on the length of gestation and duration of parturition in the rat. J Endocrinol 109:85–88

    PubMed  CAS  Google Scholar 

  • Jones SA, Summerlee AJS (1986b) Relaxin acts centrally to inhibit oxytocin release during parturition: an effect that is reversed by naloxone. J Endocrinol 111:99–102

    PubMed  CAS  Google Scholar 

  • Knepel W, Meyer DK (1983) The effect of naloxone on vasopressin release from rat neurohypophysis incubated in vitro. J Physiol (Lond) 341:507–515

    CAS  Google Scholar 

  • Knepel W, Nutto D, Anhut H, Hertting G (1980) Naloxone promotes stimulusevoked vasopressin release in vivo. Eur J Pharmacol 65:449–450

    PubMed  CAS  Google Scholar 

  • Knepel W, Nutto D, Hertting G (1982) Evidence for inhibition by β-endorphin of vasopressin release during foot shock-induced stress in the rat. Neuroendocrinology 34:353–356

    PubMed  CAS  Google Scholar 

  • Leander JD (1983) A kappa opioid effect: increased urination in the rat. J Pharmacol Exp Ther 224:89–94

    PubMed  CAS  Google Scholar 

  • Leng G, Russell JA (1989) Oxytocin, opioids and parturition. In: Dyer RG, Bicknell RJ (eds) Brain opioid systems in reproduction. Oxford University Press, Oxford, pp 231–270

    Google Scholar 

  • Leng G, Mansfield S, Bicknell RJ, Dean ADP, Ingram CD, Marsh MIC, Yates JO, Dyer RG (1985) Central opioids: a possible role in parturition? J Endocrinol 106:219–224

    PubMed  CAS  Google Scholar 

  • Leng G, Mansfield S, Bicknell RJ, Brown D, Chapman C, Hollingsworth S, Ingram CD, Marsh MIC, Yates JO, Dyer RG (1987) Stress-induced disruption of parturition in the rat may be mediated by endogenous opioids. J Endocrinol 114:247–252

    PubMed  CAS  Google Scholar 

  • Leng G, Mansfield S, Bicknell RJ, Blackburn RE, Brown D, Chapman C, Dyer RG, Hollingsworth S, Shibuki K, Yates JO, Way S (1988a) Endogenous opioid actions and effects of environmental disturbance on parturition and oxytocin secretion in rats. J Reprod Fertil 84:345–356

    PubMed  CAS  Google Scholar 

  • Leng G, Yamashita Y, Dyball REJ, Bunting R (1988b) Electrophysiological evidence for a projection from the arcuate nucleus to the supraoptic nucleus. Neurosci Lett 89:146–151

    PubMed  CAS  Google Scholar 

  • Leng G, Russell JA, Grossmann R (1989) Sensitivity of magnocellular oxytocin neurones to opioid antagonists in rats treated chronically with intracerebroventricular (icv) morphine. Brain Res 484:290–296

    PubMed  CAS  Google Scholar 

  • Leslie FM (1987) Methods used for the study of opioid receptors. Pharmacol Rev 39:208

    Google Scholar 

  • Lightman SL, Scott Young W III (1987) Vasopressin, oxytocin, dynorphin, enkephalin and corticotrophin-releasing factor mRNA stimulation in the rat. J Physiol (Lond) 394:23–29

    CAS  Google Scholar 

  • Lightman SL, Scott Young W III (1988) Corticotrophin-releasing factor, vasopressin and pro-opiomelanocortin mRNA responses to stress and opiates in the rat. J Physiol (Lond) 403:511–523

    CAS  Google Scholar 

  • Lightman SL, Iversen LL, Forsling ML (1982) Dopamine and [D-Ala2, D-Leu5] enkephalin inhibit the electrically stimulated neurohypophyseal release of vasopressin in vitro: evidence for calcium-dependent opiate action. J Neurosci 2:78–81

    PubMed  CAS  Google Scholar 

  • Lightman SL, Ninkovic M, Hunt SP, Iversen LL (1983) Evidence for opiate receptors on pituicytes. Nature 305:235–237

    PubMed  CAS  Google Scholar 

  • Lim Fidler N, Nowycky MC, Bookman RJ (1990) Direct measurement of exocytosis and calcium currents in single vertebrate nerve terminals. Nature 344:449–451

    Google Scholar 

  • Lindheimer MD, Barron WM, Davison JM (1985) Water metabolism and vasopressin secretion in pregnancy. In: Schrier RW (ed) Vasopressin. Raven, New York, pp 229–240

    Google Scholar 

  • Liston D, Rossier J (1984) Synenkephalin is corel eased with met-enkephalin from neuronal terminals in vitro. Neurosci Lett 48:211–216

    PubMed  CAS  Google Scholar 

  • Liston D, Patey G, Rossier J, Verbanck P, Vanderhaeghen J-J (1984) Processing of proenkephalin is tissue-specific. Science 225:734–737

    PubMed  CAS  Google Scholar 

  • Luckman SM, Bicknell RJ (1990) Morphological plasticity that occurs in the neurohypophysis following activation of the magnocellular neurosecretory system can be mimicked in vitro by β-adrenergic stimulation. Neuroscience 39:701–709

    PubMed  CAS  Google Scholar 

  • MacDonald RL, Werz MA (1986) Dynorphin A decreases voltage-dependent calcium conductance of mouse dorsal root ganglion neurones. J Physiol (Lond) 377:237 -249

    Google Scholar 

  • Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1987) Autoradiographic differentiation of mu, delta and kappa opioid receptors in the rat forebrain and midbrain. J Neurosci 7:2445–2464

    PubMed  CAS  Google Scholar 

  • Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1988) Anatomy of CNS opioid receptors. TINS 11:308–314

    PubMed  CAS  Google Scholar 

  • Martin R, Geis R, Holl R, Schäfer M, Voigt KH (1983) Co-existence of unrelated peptides in oxytocin and vasopressin terminals of rat neurohypophyses: immunoreactive methionine5-enkephalin-, leucine5-enkephalin- and cholecystokinin-like substances. Neuroscience 8:213–227

    PubMed  CAS  Google Scholar 

  • Maysinger D, Vermes I, Tilders F, Seizinger BR, Gramsch C, Höllt V, Herz A (1984) Differential effects of various opioid peptides on vasopressin and oxytocin release from the rat pituitary in vitro. Naunyn Schmiedebergs Arch Pharmacol 328:191–195

    PubMed  CAS  Google Scholar 

  • Merchenthaler I, Maderdrut JL, Altschuler RA, Petrusz P (1986) Immunocytochemical localisation of proenkephalin-derived peptides in the central nervous system of the rat. Neuroscience 17:325–348

    PubMed  CAS  Google Scholar 

  • Millan MH, Millan MJ, Herz A (1984) The hypothalamic paraventricular nucleus: relationship to brain and pituitary pools of vasopressin and oxytocin as compared to dynorphin, β-endorphin and related opioid peptides in the rat. Neuroendocrinology 38: 108–116

    PubMed  CAS  Google Scholar 

  • Millan MJ, Millan MH, Herz A (1983) Contribution of the supra-optic nucleus to brain and pituitary pools of immunoreactive vasopressin and particular opioid peptides, and the interrelationships between these, in the rat. Neuroendocrinology 36:310–319

    PubMed  CAS  Google Scholar 

  • Morris B, Livingston A (1983) Hormone-releasing stimuli do not alter metenkephalin levels in the rat neurohypophysis. Life Sci 33:511–513

    PubMed  CAS  Google Scholar 

  • Muhlethaler M, Gaehwiler BH, Dreifuss JJ (1980) Enkephalin-induced inhibition of hypothalamic paraventricular neurons. Brain Res 197:264–268

    Google Scholar 

  • Mulder AH, Hogenboom F, Wardeh G, Schoffelmeer ANM (1987) Morphine and enkephalins potently inhibit [3H]noradrenaline release from rat brain cortex synaptosomes: further evidence for a presynaptic localisation of μ-opioid receptors. J Neurochem 48:1043–1047

    PubMed  CAS  Google Scholar 

  • Nordmann JJ, Cazalis M, Dayanithi G, Castanas E, Giraud P, Legros J-J, Louis F (1986a) Are opioid peptides co-localised with vasopressin or oxytocin in the neural lobe of the rat? Cell Tissue Res 246: 177 – 182

    PubMed  CAS  Google Scholar 

  • Nordmann JJ, Dayanithi G, Cazalis M (1986b) Do opioid peptides modulate, at the level of the nerve endings, the release of neurohypophysial hormones? Exp Brain Res 61:560–566

    PubMed  CAS  Google Scholar 

  • Oiso Y, Iwasaki Y, Kondo K, Takatsuki K, Tomita A (1988) Effect of the opioid kappa-receptor agonist U50488H on the secretion of arginine vasopressin. Neuroendocrinology 48:658–662

    PubMed  CAS  Google Scholar 

  • Panula P, Lindberg I (1987) Enkephalins in the rat pituitary gland: immunohistochemical and biochemical observations. Endocrinology 121:48–58

    PubMed  CAS  Google Scholar 

  • Pesce G, Lang MA, Russell JT, Rodbard D, Gainer H (1987) Characterisation of K opioid receptors in neurosecretosomes from bovine posterior pituitary. J Neurochem 49:421–427

    PubMed  CAS  Google Scholar 

  • Petraglia F, Baraldi M, Giarre G, Facchinettii F, Santi M, Volpe A, Genazzani AR (1985) Opioid peptides of pituitary and hypothalamus: changes in pregnant and lactating rats. J Endocrinol 105:239–245

    PubMed  CAS  Google Scholar 

  • Pittman QJ, Hatton JD, Bloom FE (1980) Morphine and opioid peptides reduce paraventricular neuronal activity: studies on the rat hypothalamic slice preparation. Proc Natl Acad Sci USA 77:5527–5531

    PubMed  CAS  Google Scholar 

  • Poulain DA, Wakerley JB (1982) Electrophysiology of hypothalamic magnocellular neurones secreting oxytocin and vasopressin. Neuroscience 7:773–808

    PubMed  CAS  Google Scholar 

  • Racké K, Ritzel H, Trapp B, Muscholl E (1982a) Dopaminergic modulation of evoked vasopressin release from the isolated neurohypophysis of the rat. Naunyn Schmiedebergs Arch Pharmacol 319:56–65

    PubMed  Google Scholar 

  • Racké K, Rothlander M, Muscholl E (1982b) Isoprenaline and forskolin increase evoked vasopressin release from rat pituitary. Eur J Pharmacol 82:97–100

    PubMed  Google Scholar 

  • Racké K, Altes U, Bauer A-M, Jost D, Schafer J (1987) Tetraethylammonium ions and 4-aminopyridine prevent opioid inhibition of neurohypophysial oxytocin release. Brain Res 436:371–373

    PubMed  Google Scholar 

  • Racké K, Hering B, Weber I (1990) Effects of different opioid receptor antagonists on the electrically-evoked release of endogenous dopamine from the isolated neural lobe of the rat pituitary gland in vitro. J Neuroendocrinol 2:335–339

    PubMed  Google Scholar 

  • Rayner VC, Robinson ICAF, Russell JA (1988) Chronic intracerebroventricular morphine and lactation in rats: dependence and tolerance in relation to oxytocin neurones. J Physiol (Lond) 396:319–347

    CAS  Google Scholar 

  • Renaud LP, Tang M, McCann MJ, Stricker EM, Verbalis JG (1987) Cholecystokinin and gastric distension activate oxytocinergic cells in rat hypothalamus. Am J Physiol 253:661–665

    Google Scholar 

  • Romano GJ, Mobbs CV, Howells RD, Pfaff DW (1989) Estrogen regulation of proenkephalin gene expression in the ventromedial hypothalamus of the rat: temporal qualities and synergism with progesterone. Mol Brain Res 5:51–58

    PubMed  CAS  Google Scholar 

  • Rosella-Dampman LM, Summy-Long JY (1985) Dexamethasone differentially alters naltrexone effects on vasopressin and oxytocin release during tail electroshock. Brain Res Bull 15:587–593

    PubMed  CAS  Google Scholar 

  • Rossier J, Vargo TM, Minick S, Ling N, Bloom FE, Guillemin R (1977) Regional dissociation of Β-endorphin and enkephalin contents in rat brain and pituitary. Proc Natl Acad Sci USA 74:5162–5165

    PubMed  CAS  Google Scholar 

  • Rossier J, Pittman Q, Bloom F, Guillemin R (1980) Distribution of opioid peptides in the pituitary: a new hypothalamic-pars nervosa enkephalinergic pathway. Fed Proc 39:2555–2560

    PubMed  CAS  Google Scholar 

  • Russell JA (1989) Opiate dependence and tolerance in oxytocinergic neurones. Biomed Res 10:95–106

    CAS  Google Scholar 

  • Russell JA, Gosden RG, Humphreys EM, Cutting R, Fitzsimons N, Johnston V, Liddle S, Scott S, Stirland JA (1989) Interruption of parturition in rats by morphine: a result of inhibition of oxytocin secretion. J Endocrinol 121:521–536

    PubMed  CAS  Google Scholar 

  • Samson WK, McDonald JK, Lumpkin MD (1985) Naloxone-induced dissociation of oxytocin and prolactin releases. Neuroendocrinology 40:68–71

    PubMed  CAS  Google Scholar 

  • Sander HW, Portoghese PS, Gintzler AR (1988) Spinal κ-opiate receptor involvement in the analgesia of pregnancy: effects of intrathecal norbinaltorphimine, a κ-selective antagonist. Brain Res 474:343–347

    PubMed  CAS  Google Scholar 

  • Sander HW, Kream RM, Gintzler AR (1989) Spinal dynorphin involvement in the analgesia of pregnancy: effects of intrathecal dynorphin antisera. Eur J Pharmacol 159:105–209

    Google Scholar 

  • Sawchenko PE, Swanson LW, Joseph SA (1982) The distribution and cells of origin of ACTH(1–39)-stained varicosities in the paraventricular and supraoptic nuclei. Brain Res 232:365–374

    PubMed  CAS  Google Scholar 

  • Schäfer MK-H, Day R, Ortega MR, Akil H, Watson SJ (1990) Proenkephalin messenger RNA is expressed both in the rat anterior and posterior pituitary. Neuroendocrinology 51:444–448

    PubMed  Google Scholar 

  • Seizinger BR, Höllt V, Herz A (1984) Proenkephalin B (prodynorphin)-derived opioid peptides: evidence for a differential processing in lobes of the pituitary. Endocrinology 115:662–671

    PubMed  CAS  Google Scholar 

  • Sherman TG, Civelli O, Douglass J, Herbert E, Watson SJ (1986) Coordinate expression of hypothalamic pro-dynorphin and pro-vasopressin mRNAs with osmotic stimulation. Neuroendocrinology 44:222–228

    PubMed  CAS  Google Scholar 

  • Sherman TG, Day R, Civelli O, Douglass J, Herbert E, Akil H, Watson SJ (1988) Regulation of hypothalamic magnocellular neuropeptides and their mRNAs in the Brattleboro rat: coordinate responses to further osmotic challenge. J Neurosci 8:3785–3796

    PubMed  CAS  Google Scholar 

  • Sheward WJ, Coombes JE, Bicknell RJ, Fink G, Russell JA (1990) Release of oxytocin but not corticotrophin-releasing factor-41 into rat hypophysial portal vessel blood can be made opiate dependent. J Endocrinol 124:141–150

    PubMed  CAS  Google Scholar 

  • Shibuki K, Leng G, Way S (1988) Effects of naloxone and of intraperitoneal hypertonic saline upon oxytocin release and upon supraoptic neuronal activity. Neurosci Lett 88:75–80

    PubMed  CAS  Google Scholar 

  • Shioda S, Nakai Y, Ochiai H, Nakada H, Sano Y (1984) Simultaneous identification of two different neuropeptides using a combined PAP and protein A-gold technique in the rat neurohypophysis. J Electron Microsc (Tokyo) 33:72–72

    CAS  Google Scholar 

  • Simantov R, Snyder SH (1977) Opiate receptor binding in the pituitary gland. Brain Res 124:178–184

    PubMed  CAS  Google Scholar 

  • Slizgi GR, Ludens JH (1982) Studies on the nature and mechanism of the diuretic activity of the opioid analgesic ethylketocyclazocine. J Pharmacol Exp Ther 220:585–591

    PubMed  CAS  Google Scholar 

  • Smithson KG, Suarez I, Hatton GI (1990) Beta-adrenergic stimulation decreases glial and increases neural contact with the basal lamina in rat neurointermediate lobes incubated in vitro. J Neuroendocrinol 2:693–699

    PubMed  CAS  Google Scholar 

  • Stojilkovic SS, Dufau ML, Catt KJ (1987) Opiate receptor subtypes in the rat hypothalamus and neurointermediate lobe. Endocrinology 121:384–394

    PubMed  CAS  Google Scholar 

  • Summy-Long JY, Miller DS, Rosella-Dampman LM, Hartman RD, Emmert SE (1984) A functional role for opioid peptides in the differential secretion of vasopressin and oxytocin. Brain Res 309:362–366

    PubMed  CAS  Google Scholar 

  • Summy-Long JY, Denlinger C, Palm D, Hartman RD, Rosella-Dampman LM (1986) Naloxone effects on plasma vasopressin and oxytocin concentrations elevated by histamine, nicotine, isoproterenol and an acute increase in [NaCl] in cerebrospinal fluid. Neuroendocrinology 44:157–162

    PubMed  CAS  Google Scholar 

  • Summy-Long JY, Rosella-Dampman LM, Mclemore GL, Koehler E (1990) Kappa opiate receptors inhibit release of oxytocin from the magnocellular system during dehydration. Neuroendocrinology 51:376–384

    PubMed  CAS  Google Scholar 

  • Sumner BEH, Coombes JE, Pumford KM, Russell JA (1990) Opioid receptor subtypes in the supraoptic nucleus and posterior pituitary gland of morphinetolerant rats. Neuroscience 37:635–645

    PubMed  CAS  Google Scholar 

  • Tempel A, Zukin RS (1987) Neuroanatomical patterns of the μ, δ, and κ-opioid receptors of rat brain as determined by quantitative in vitro autoradiography. Proc Natl Acad Sci USA 84:4308–4312

    PubMed  CAS  Google Scholar 

  • Vanderhaeghen JJ, Lotstra F, Liston DR, Rossier J (1983) Proenkephalin, [Met]enkephalin, and oxytocin immunoreactivities are colocalised in bovine hypothalamic magnocellular neurons. Proc Natl Acad Sci USA 80:5139–5143

    PubMed  CAS  Google Scholar 

  • Van Leeuwen FW, Pool CW, Sluiter AA (1983) Enkephalin immunoreactivity in synaptoid elements on glial cells in the rat neural lobe. Neuroscience 8:229–241

    PubMed  Google Scholar 

  • Van Tol HHM, Bolwerk ELM, Liu B, Burbach JPH (1988) Oxytocin and vasopressin gene expression in the hypothalamo-neurohypophyseal system of the rat during the estrous cycle, pregnancy, and lactation. Endocrinology 122:945–951

    PubMed  Google Scholar 

  • Van Wimersma Greidanus TB, Thody TJ, Verspaget H, de Rotte GA, Goedemans HJH, Croiset G, van Ree JM (1979) Effects of morphine and p-endorphin on basal and elevated plasma levels of α-MSH and vasopressin. Life Sci 24:579–586

    PubMed  Google Scholar 

  • Verbalis JG, McCann MJ, McHale CM, Stricker EM (1986) Oxytocin secretion in response to cholecystokinin and food intake: differentiation of nausea from satiety. Science 232:1417–1419

    PubMed  CAS  Google Scholar 

  • Von Voigtlander PF, Lahti RA, Ludens JH (1983) U50,488H: a selective and structurally novel non-mu (kappa) opioid agonist. J Pharmacol Exp Ther 224:7–12

    Google Scholar 

  • Wakerley JB, Noble R, Clarke G (1983) Effects of morphine and o-Ala, o-Leu enkephalin on the electrical activity of supraoptic neurosecretory cells in vitro. Neuroscience 10:73–81

    PubMed  CAS  Google Scholar 

  • Wamsley JK, Zarbin MA, Young WS, Kuhar MJ (1982) Distribution of opiate receptors in the monkey brain: an autoradiographic study. Neuroscience 7:595–613

    PubMed  CAS  Google Scholar 

  • Wardlaw SL, Frantz AG (1983) Brain Β-endorphin during pregnancy, parturition and the postpartum period. Endocrinology 113:1664–1668

    PubMed  CAS  Google Scholar 

  • Watson SJ, Akil A, Ghazarossian VE, Goldstein A (1981) Dynorphin immunocytochemical localisation in brain and peripheral nervous system: preliminary studies. Proc Natl Acad Sci USA 2: 1260–1263

    Google Scholar 

  • Watson SJ, Akil H, Fischli W, Goldstein A, Zimmerman E, Nilaver G, van Wimersma Greidanus TB (1982) Dynorphin and vasopressin: common localisation in magnocellular neurons. Science 216:85–87

    PubMed  CAS  Google Scholar 

  • Weber E, Evans CJ, Barchas JD (1982) Predominance of the amino-terminal octapeptide fragment of dynorphin in rat brain regions. Nature 299:77–79

    PubMed  CAS  Google Scholar 

  • Whitnall MH, Gainer H, Cox BM, Molineaux CJ (1983) Dynorphin-A-(1–8) is contained within vasopressin neurosecretory vesicles in rat pituitary. Science 222:1137–1139

    PubMed  CAS  Google Scholar 

  • Wilcox IN, Roberts JL (1985) Estrogen decreases rat hypothalamic proopiomelanocortin messenger ribonucleic acid levels. Endocrinology 117:2392–2396

    PubMed  CAS  Google Scholar 

  • Wright DM (1985) Evidence for a spinal site at which opioids may act to inhibit the milk-ejection reflex. J Endocrinol 106:401–407

    PubMed  CAS  Google Scholar 

  • Wuarin J-P, Dudek FE (1990) Direct effects of an opioid peptide selective for μ-receptors: intracellular recordings in the paraventricular and supraoptic nuclei of the guinea-pig. Neuroscience 36:291–298

    PubMed  CAS  Google Scholar 

  • Wuarin JP, Dubois-Duaphin M, Raggenbass M, Dreifuss JJ (1988) Effect of opioid peptides on the paraventricular nucleus of the guinea pig hypothalamus is mediated by μ-type receptors. Brain Res 445:289–296

    PubMed  CAS  Google Scholar 

  • Yamada K, Nakano M, Yoshida S (1990) Inhibition of elevated arginine vasopressin secretion in response to osmotic stimulation and acute haemorrhage by U-62066E, a κ-opioid receptor agonist. Br J Pharmacol 99:384–388

    PubMed  CAS  Google Scholar 

  • Yamada T, Nakao K, Itoh H, Shirakami G, Sugawara A, Saito Y, Mukoyama M, Arai H, Hosoda K, Shiono S, Eigyo M, Matsushita A, Imura H (1989) Effects of naloxone on vasopressin secretion in conscious rats: evidence for inhibitory role of endogenous opioid peptides in vasopressin secretion. Endocrinology 125:785–790

    PubMed  CAS  Google Scholar 

  • Zamir N (1985) On the origin of leu-enkephalin and met-enkephalin in the rat neurohypophysis. Endocrinology 117: 1687 – 1692

    PubMed  CAS  Google Scholar 

  • Zamir N, Zamir D, Eiden LE, Palkovits M, Brownstein MJ, Eskay RL, Weber E, Faden AI, Feuerstein G (1985) Methionine and leucine enkephalin in rat neurohypophysis: different responses to osmotic stimuli and T2 toxin. Science 228:606–608

    PubMed  CAS  Google Scholar 

  • Zhao B-G, Chapman C, Bicknell RJ (1988a) Opioid-noradrenergic interactions in the neurohypophysis. I. Differential opioid receptor regulation of oxytocin, vasopressin, and noradrenaline release. Neuroendocrinology 48:16–24

    PubMed  CAS  Google Scholar 

  • Zhao B-G, Chapman C, Brown D, Bicknell RJ (1988b) Opioid-noradrenergic interactions in the neurohypophysis. II. Does noradrenaline mediate the actions of endogenous opioids on oxytocin and vasopressin release? Neuroendocrinology 48:25–31

    PubMed  CAS  Google Scholar 

  • Zhao B-G, Chapman C, Bicknell RJ (1988c) Functional κ-opioid receptors on oxytocin and vasopressin nerve terminals isolated from the rat neurohypophysis. Brain Res 462:62–66

    PubMed  CAS  Google Scholar 

  • Zingg HH, Lefebvre DL (1988) Oxytocin and vasopressin gene expression during gestation and lactation. Mol Brain Res 4: 1–6

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bicknell, R.J. (1993). Opioids in the Neurohypophysial System. In: Herz, A., Akil, H., Simon, E.J. (eds) Opioids II. Handbook of Experimental Pharmacology, vol 104 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77540-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77540-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77542-0

  • Online ISBN: 978-3-642-77540-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics