Skip to main content

Supraspinal Opioid Receptors in Antinociception

  • Chapter
Opioids II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 104 / 2))

Abstract

The identification of opioid receptor involvement in functional endpoints such as antinociception has depended, to a large degree, on the development and availability of ligands with sufficient selectivity to insure confidence that the measured effect is related to activity at the receptor in question. The development of selective ligands has recently progressed at a rapid pace so that a reasonable degree of confidence now exists that in the opioid system, as in many other receptor systems, multiple receptor involvement in most functional endpoints is the rule, rather than the exception. The importance of selective ligands in our understanding of opioid pharmacology has been demonstrated since the early studies of Portoghese (1965) as well as those of Martin and colleagues (Martin 1967; Martin et al. 1976; Gilbert and Martin 1976). These investigators used several opiate agonists in the evaluation of opiate effects in vivo. In particular, the latter group (Martin et al. 1976) used these opiates to establish a profile of responses in their model and provided the basis for an initial classification of opiate receptors which has been remarkably consistent since that time. In this classification, opiate receptors were postulated on the basis of the spectrum of activity produced by several prototype drugs, resulting in the suggestion of opiate μ-receptors which were activated by morphine, κ-receptors acted upon by ketocyclazocine and σ-receptors acted upon by SKF 10047.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott FV, Franklin KB J, Libman RB (1986) A dose-ratio comparison of mu and kappa agonists in formalin and thermal pain. Life Sci 39:2017–2024.

    PubMed  CAS  Google Scholar 

  • Adams JU, Paronis CA, Holtzman SG (1990) Assessment of relative intrinsic activity of mu-opioid analgesics in vivo by using β-funaltrexamine. J Pharmacol Exp Ther 255:1027–1032

    PubMed  CAS  Google Scholar 

  • Amiche M, Sagan S, Mor A, Delfour A, Nicolas P (1989) Dermenkephalin (Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2): a potent and fully specific agonist for the δ opioid receptor. Mol Pharmacol 35:774–779

    PubMed  CAS  Google Scholar 

  • Audigier Y, Mazarguil H, Gout R, Cros J (1980) Sturcture-activity relationships of enkephalin analogs at opiate and enkephalin receptors: correlation with analgesia. Eur J Pharmacol 63:35–46

    PubMed  CAS  Google Scholar 

  • Beecher HK (1946) Pain in men wounded in battle. Ann Surg 123:96–105

    PubMed  CAS  Google Scholar 

  • Belknap JK, Laursen SE (1987) DSLET (D-Ser2-Leu5-enkephalin-Thr6) produces analgesia on the hot-plate by mechanisms largeley different from DAGO and morphine-like opioids. Life Sci 41:391–395

    PubMed  CAS  Google Scholar 

  • Bodnar RJ, Williams CL, Lee SJ, Pasternak GW (1988) Role of μ1 opiate receptors in supraspinal analgesia: a microinjection study. Brain Res 447:25–34

    PubMed  CAS  Google Scholar 

  • Bowen WD, Hellewell SB, Kelemen M, Huey R, Stewart D (1987) Affinity labeling of γ-opiate receptors using [d-Ala2, Leu5, Cys6]enkephalin: covalent attachment via thiol-disulfide exchange. J Biol Chem 262:13434–13439

    PubMed  CAS  Google Scholar 

  • Calcagnetti DJ, Holtzman SG (1991) Delta opioid antagonist, naltrindole, selectively blocks analgesia induced by DPDPE but not DAGO or morphine. Pharmacol Biochem Behav 38:185–190

    PubMed  CAS  Google Scholar 

  • Calcagnetti DJ, Helmstetter FJ, Fanselow MS (1988) Analgesia produced by centrally administered DAGO, DPDPE and U50488H in the formalin test. Eur J Pharmacol 153: 117–122

    PubMed  CAS  Google Scholar 

  • Calcagnetti DJ, Fanselow MS, Helmstetter FJ, Bowen WD (1989) [d-Ala2, Leu5, Cys6]enkephalin: short-term agonist effects and long-term antagonism at delta opioid receptors. Peptides 10:319–326

    PubMed  CAS  Google Scholar 

  • Chaillet P, Coulaud A, Zajac J-M, Fourinie-Zaluski M-C, Costentin J, Roques B (1984) The μ rather than the δ subtype of opioid receptors appears to be involved in enkephalin-induced analgesia. Eur J Pharmacol 101:83–90

    PubMed  CAS  Google Scholar 

  • Chang KJ, Wei ET, Killian A, Chang JK (1983) Potent morphiceptin analogs: structure activity relationships and morphine-like activities. J Pharmacol Exp Ther 227:403–408

    PubMed  CAS  Google Scholar 

  • Clark CR, Birchmore B, Sharif NA, Hunter JC, Hill RG, Hughes J (1988) PD 117302: a selective agonist for the Κ-opioid receptor. Br J Pharmacol 93:618–626

    PubMed  CAS  Google Scholar 

  • Clark JA, Liu L, Price M, Hersh B, Edelson M, Pasternak GW (1989) Kappa opiate receptor multiplicity: evidence for two U50,488- sensitive Κ1 subtypes and a novel Κ3 subtype. J Pharmacol Exp Ther 251:461–468

    PubMed  CAS  Google Scholar 

  • Cotton R, Giles MG, Miller L, Shaw JS, Timms D (1984) ICI 174,864: a highly selective antagonist for the opioid δ receptor. Eur J Pharmacol 97:331–332

    PubMed  CAS  Google Scholar 

  • Cowan A, Doxey JC, Metcalf G (1976) A comparison of pharmacological effects produced by leucint-enkephalin, methionine-enkephalin, morphine and ketocyclazocine. In: Kosterlitz H (ed) Opiates and endogenous opioid peptides. Elsevier/North-Holland, Amsterdam, pp 95–102

    Google Scholar 

  • Cowan A, Porreca F, Wheeler H (1988) Evaluation of the kappa agonist, PD 117302, after intrathecal, i.c.v., oral and s.c. administration in a rat tonic pain model. INRC Abstracts, Albi, p 49

    Google Scholar 

  • De Costa BR, Band L, Rothman RB, Jacobsen AE, Bykov V, Pert A, Rice KC (1989) Synthesis of an affinity ligand (UPHIT) for in vivo acylation of the κ-opioid receptor. FEBS Lett 249:178–182

    PubMed  Google Scholar 

  • Dykstra LA, Gmerek DE, Winger G, Woods JH (1987) Kappa opioids in rhesus monkeys. I. Diuresis, sedation, analgesia and discriminative stimulus effects. J Pharmacol Exp Ther 242:413–420

    PubMed  CAS  Google Scholar 

  • Erspamer V, Melchiorri P, Falconieri-Erspamer G, Negri L, Corsi R, Severini C, Barra D, Simmaco M, Kreil G (1989) Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for δ opioid binding sites. Proc Natl Acad Sci USA 86:5188–5192

    PubMed  CAS  Google Scholar 

  • Fang FG, Fields HL, Lee NM (1986) Action at the mu receptor is sufficient to explain the supraspinal analgesic effect of opiates. J Pharmacol Exp Ther 238:1039–1044

    PubMed  CAS  Google Scholar 

  • Fanselow MS, Calcagnetti DJ, Helmstetter FJ (1989) Role of mu and kappa opioid receptors in conditional fear-induced analgesia: the antagonistic actions of nor- binaltorphimine and the cyclic somatostatin octapeptide, Cys2Tyr3Orn5Pen7 - amide. J Pharmacol Exp Ther 250:825–830

    PubMed  CAS  Google Scholar 

  • Gacel GA, Fellion E, Baamonde A, Dauge V, Roques BP (1988) Synthesis, biochemical and pharmacological properties of BUBUC, a highly selective and systemically active agonist for in vivo studies of δ-opioid receptors. Peptides 11:983–988

    Google Scholar 

  • Galligan JJ, Mosberg HI, Hurst R, Hurby VJ, Burks TF (1984) Cerebral delta opioid receptors mediate analgesia but not the intestinal motility effects of intracerebroventricularly administered opioids. J Pharmacol Exp Ther 229:641–648

    PubMed  CAS  Google Scholar 

  • Gilbert PE, Martin WR (1976) The effects of morphine- and nalorphine-like drugs in the nondependent, morphine-dependent and cyclazocine-dependent chronic spinal dog. J Pharmacol Exp Ther 198:66–82

    PubMed  CAS  Google Scholar 

  • Gillan MGC, Kosterlitz HW (1982) Spectrum of the (μ, δ- and Κ-binding sites in homogenates of rat brain. Br J Pharmacol 77:461–469

    PubMed  CAS  Google Scholar 

  • Giordano AL, Nock B, Cicero TJ (1990) Antagonist-induced up-regulation of the putative epsilon opioid receptor in rat brain: comparison with kappa, mu and delta opioid receptors. J Pharmacol Exp Ther 255:536–540

    PubMed  CAS  Google Scholar 

  • Gistrak MA, Paul D, Hahn EF, Pasternak GW (1989) Pharmacological actions of a novel mixed opiate agonist antagonist: naloxone benzoylhydrazone. J Pharmacol Exp Ther 251:469–476

    PubMed  CAS  Google Scholar 

  • Goodman RR, Pasternak GW (1985) Visualization of μ1 opiate receptors in rat brain by using a computerized autoradiographic subtraction technique. Proc Natl Acad Sci USA 82:6667–6671

    PubMed  CAS  Google Scholar 

  • Gulya K, Krivan M, Nyolczas N, Sarnyai Z, Kovacs GL (1988) Central effects of the potent and highly selective μ opioid antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) in mice. Eur J Pharmacol 150:355–360

    PubMed  CAS  Google Scholar 

  • Hahn EF, Carroll-Buatti M, Pasternak GW (1982) Irreversible opiate agonists and antagonists: the 14-hydroxydihydromorphinone azines. J Neurosci 2:572–576

    PubMed  CAS  Google Scholar 

  • Handa BK, Lane AC, Lord J AH, Morgan BA, Ranee MJ, Smith CFC (1981) Analogues of beta-LPH possessing selective agonist activity at mu-opiate receptors. Eur J Pharmacol 70:531–540

    PubMed  CAS  Google Scholar 

  • Harris LS, Pierson AK (1963) Some narcotic antagonists in the benzomorphan series. J Pharmacol Exp Ther 143:141–148

    Google Scholar 

  • Hayes AG, Skingle M, Tyers MB (1986) Reversal by β-funaltrexamine of the antinociceptive effect of opioid agonists in the rat. Br J Pharmacol 88:867–872

    PubMed  CAS  Google Scholar 

  • Hayes AG, Birch PJ, Hayward NJ, Sheehan MJ, Rogers H, Tyers MB, Judd DB, Scopes DIC, Naylor A (1990) A series of novel, highly potent and selective agonists for the κ-opioid receptor. Br J Pharmacol 101:944–948

    PubMed  CAS  Google Scholar 

  • Heyman JS, Koslo RJ, Mosberg HI, Porreca F (1986) Estimation of the affinity of naloxone at supraspinal and spinal opioid receptors in vivo: studies with opioid selective agonists. Life Sci 39:1795–1803

    PubMed  CAS  Google Scholar 

  • Heyman JS, Mulvaney SA, Mosberg HI, Porreca F (1987) Opioid 5-receptor involement in supraspinal and spinal antinociception in mice. Brain Res 420:100–108

    PubMed  CAS  Google Scholar 

  • Heyman JS, Vaught JL, Raffa RB, Porreca F (1988a) Can supraspinal 5 receptors mediate antinociception? Trends Pharmacol Sci 9:134–138

    PubMed  CAS  Google Scholar 

  • Heyman JS, Williams CL, Burks TF, Mosberg HI, Porreca F (1988b) Dissociation of opioid antinociception and central gastrointestinal propulsion in the mouse: studies with naloxonazine. J Pharmacol Exp Ther 245:238–243

    PubMed  CAS  Google Scholar 

  • Horan PH, de Costa BR, Rice KC, Porreca F (1991) Differential antagonism of U69,593- and bremazocine-induced antinociception by UPHIT: evidence of kappa opioid receptor multiplicity in mice. J Pharmacol Exp Ther 257:1154–1161

    PubMed  CAS  Google Scholar 

  • Hughes J AH, Smith TW, Kosterlitz HW, Fothergill LA, Morgan B, Morris HR (1975) Identification of two related pentapeptides from brain with potent opiate agonist activity. Nature 258:577–579

    PubMed  CAS  Google Scholar 

  • Hunter JC, Leighton GE, Meecham KG, Boyle SJ, Horwell DC, Rees DC, Hughes J (1990) CI-977, a novel and selective agonist for the κ-opioid receptor. Br J Pharmacol 101:103–109

    Google Scholar 

  • Hynes MD, Frederickson RCA (1982) Cross-tolerance studies distinguish morphine and metkephamid-induced analgesia. Life Sci 31:1201–1204

    PubMed  CAS  Google Scholar 

  • Jackson HC, Kitchen I (1989) Swim-stress-induced antinociception in young rats. Br J Pharmacol 96:617–622

    PubMed  CAS  Google Scholar 

  • Jensen TS, Yaksh TL (1986) III. Comparison of the antinociceptive action of mu and delta opioid receptor ligands in the periaqueductal gray matter, medial and paramedial ventral medulla in the rat as studied by the microinjection technique. Brain Res 372:301–312

    PubMed  CAS  Google Scholar 

  • Jiang Q, Mosberg HI, Porreca F (1990) Antinociceptive effects of [d-Ala2]deltorphin II, a highly selective δ agonist in vivo. Life Sci Pharmacol Lett 47:PL-43–47

    Google Scholar 

  • Jiang Q, Takemori AE, Sultana M, Portoghese PS, Bowen WD, Mosberg HI, Porreca F (1991) Differential antagonism of opioid delta antinociception by [d-Ala2, Leu5, Cys6]enkephalin (DALCE) and naltrindole-5′-isothiocyanate (5′-NTH): evidence for delta receptor subtypes. J Pharmacol Exp Ther 257: 1069–1075

    PubMed  CAS  Google Scholar 

  • Kitchen I, Pinker SR (1990) Antagonism of swim-stress-induced antinociception by the δ-opioid receptor antagonist naltrindole in adult and young rats. Br J Pharmacol 100:685–688

    PubMed  CAS  Google Scholar 

  • Knapp RJ, Porreca F, Burks TF, Yamamura HI (1989) Mediation of analgesia by multiple opioid receptors. In: Hill CS Jr, Fields WS (eds) Advances in pain research and therapy, vol 11. Raven, New York, pp 247–289

    Google Scholar 

  • Kovacs GL, Nyolczas N, Krivan M, Gulya K (1988) Analgesic and tolerance inducing effects of the highly selective δ opioid agonist [d-Pen2, d- Pen5]enkephalin in mice. Eur J Pharmacol 150:347–353

    PubMed  CAS  Google Scholar 

  • Kreil G, Barra D, Simmaco M, Erspamer V, Falconieri-Erspamer G, Negri L, Severini C, Corsi R, Melchiorri P (1989) Deltorphin, a novel amphibian skin peptide with high selectivity and affinity for δ opioid receptors. Eur J Pharmacol 162:123–128

    PubMed  CAS  Google Scholar 

  • Lazarus LH, Wilson WE, de Castiglione R, Guglietta A (1989) Dermorphin gene sequence peptide with high affinity and selectivity for δ-opioid receptors. J Biol Chem 264:3047–3050

    PubMed  CAS  Google Scholar 

  • Leff P, Dougall IG (1989) Estimation of affinities and efficacies for κ-receptor agonists in guinea pig ileum. Br J Pharmacol 96:702–706

    PubMed  CAS  Google Scholar 

  • Leighton GE, Johnson MA, Meecham KG, Hill RG, Hughes J (1987) Pharmacological profile of PD 117302, a selective κ-opioid agonist. Br J Pharmacol 92:915–922

    PubMed  CAS  Google Scholar 

  • Leighton GE, Rodrigues RE, Hill RG, Hughes J (1988) κ-opioid agonists produce antinociception after i.v. and i.c.v. but not intrathecal administration. Br J Pharmacol 93:553–560

    PubMed  CAS  Google Scholar 

  • Lemaire S, Magnan J, Regoli D (1978) Rat vas deferens: a specific bioassay for endogenous opioid peptides. Br J Pharmacol 64:327–329

    PubMed  CAS  Google Scholar 

  • Ling GSF, Pasternak GW (1983) Spinal and supraspinal opioid analgesia in the mouse: the role of subpopulations of opioid binding sites. Brain Res 271:152–156

    PubMed  CAS  Google Scholar 

  • Ling GSF, Spiegel K, Lockhart SH, Pasternak GW (1985) Separation of opioid analgesia from respiratory depression: evidence for different receptor mechanisms. J Pharmacol Exp Ther 232:149–155

    PubMed  CAS  Google Scholar 

  • Ling GSF, Simantov R, Clark JA, Pasternak GW (1986) Naloxonazine actions in vivo. Eur J Pharmacol 129:33–38

    PubMed  CAS  Google Scholar 

  • Lord J AH, Waterfield AA, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267:495–499

    PubMed  CAS  Google Scholar 

  • Martin WR (1967) Opioid antagonists. Pharmacol Rev 19:463–521

    PubMed  CAS  Google Scholar 

  • Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine- and nalorphine-like drugs in the non-dependent and morphine- dependent chronic spinal dog. J Pharmacol Exp Ther 197:517–532

    PubMed  CAS  Google Scholar 

  • Mattia A, Vanderah T, Mosberg HI, Porreca F (1991) Lack of antinociceptive cross-tolerance between [d-Pen2, d-Pen5]enkephalin and [d-Ala2]deltorphin II in mice: evidence for delta receptor subtypes. J Pharmacol Exp Ther 258:583–587

    PubMed  CAS  Google Scholar 

  • Mathiasen JR, Raffa RB, Vaught JL (1987) C57BL/6J-bgj (beige) mice: differential sensitivity in the tail-flick test to centrally administered mu- and delta-opioid receptor agonists. Life Sci 40: 1989–1994

    PubMed  CAS  Google Scholar 

  • Millan MJ (1986) Multiple opioid systems and pain. Pain 27:303–347

    PubMed  CAS  Google Scholar 

  • Millan MJ (1989) Kappa-opioid receptor mediated antinociception in the rat. I. Comparative actions of mu- and kappa-opioids against noxious thermal, pressure and electrical stimuli. J Pharmacol Exp Ther 251:334–341

    PubMed  CAS  Google Scholar 

  • Millan MJ (1990) κ-Opioid receptors and analgesia. Trends Pharmacol Sci 11:70–76

    PubMed  CAS  Google Scholar 

  • Millan MJ, Czlonkowski A, Herz A (1987) Evidence that μ-opioid receptors mediate midbrain “stimulation-produced analgesia” in the freely moving rat. Neuroscience:22:885–896

    PubMed  CAS  Google Scholar 

  • Millan MJ, Morris BJ, Herz A (1988) Antagonist-induced opioid receptor upregulation. I. Characterization of supersensitivity to selective mu and kappa agonists. J Pharmacol Exp Ther 247:721–728

    PubMed  CAS  Google Scholar 

  • Millan MJ, Czlonkowski A, Lipkowski A, Herz A (1989) Kappa-opioid receptor mediated antinociception in the rat. II. Supraspinal in addition to spinal sites of action. J Pharmacol Exp Ther 251:342–350

    PubMed  CAS  Google Scholar 

  • Miller L, Shaw JS, Whiting EM (1986) The contribution of intrinsic activity to the action of opioids in vitro. Br J Pharmacol 87:595–601

    PubMed  CAS  Google Scholar 

  • Mosberg HI, Hurst R, Hruby VJ, Gee K, Yamamura HI, Galligan JJ, Burks TF (1983) Bis-penicillamine enkephalins possess highly improved specificity toward delta opioid receptors. Proc Natl Acad Sci USA 80:5871–5874

    PubMed  CAS  Google Scholar 

  • Moskowitz AS, Goodman RR (1985) Autoradiographic distribution of mux and mu2 opioid binding in mouse central nervous system. Brain Res 360:117–129

    PubMed  CAS  Google Scholar 

  • Negri L, Potenza RL, Corsi R, Melchiorri P (1991) Evidence for two subtypes of δ opioid receptors in rat brain. Eur J Pharmacol 196:335–336

    PubMed  CAS  Google Scholar 

  • Nicolas P, Li CH (1985) β-Endorphin-(1–27) is a naturally occurring antagonist to etorphine-induced analgesia. Proc Natl Acad Sci USA 82:3178–3181

    PubMed  CAS  Google Scholar 

  • Nock B, Giordano AL, Cicero TJ, O’Connor LH (1990) Affinity of drugs and petides for U-69,593-sensitive and -insensitive kappa opiate binding sites: the U-69–593-insensitive site appears to be the beta-endorphin-specific epsilon receptor. J Pharmacol Exp Ther 254:412–419

    PubMed  CAS  Google Scholar 

  • Parolaro D, Crema G, Sala M, Santagostino A, Giagnoni G, Gori E (1986) Intestinal effect and analgesia: evidence for different involvement of opioid receptor subtypes in periaqueductal gray matter. Eur J Pharmacol 120:95–99

    PubMed  CAS  Google Scholar 

  • Pasternak GW, Wood PJ (1986) Multiple mu opiate receptors. Life Sci 38:1889–1898

    PubMed  CAS  Google Scholar 

  • Paul D, Pasternak GW (1988) Differential blockade by naloxonazine of two μ opiate actions: analgesia and gastrointestinal transit. Eur J Pharmacol 149:403–404

    PubMed  CAS  Google Scholar 

  • Paul D, Bodnar RJ, Gistrak MA, Pasternak GW (1989) Different μ receptor subtypes mediate spinal and supraspinal analgesia in mice. Eur J Pharmacol 168:307–314

    PubMed  CAS  Google Scholar 

  • Paul D, Levinson JA, Howard DH, Pick CG, Hahn EF, Pasternak GW (1990) Naloxone benzoylhydrazone (NalBzoH) analgesia. J Pharmacol Exp Ther 255:769–774

    PubMed  CAS  Google Scholar 

  • Pelton JT, Gulya K, Hruby VJ, Duckies SP, Yamamura HI (1985) Conformationally-restricted analogs of somatostatin with high mu-opiate receptor specificity. Proc Natl Acad Sci USA 82:236–239

    PubMed  CAS  Google Scholar 

  • Pelton JT, Kazmierski W, Gulya K, Yamamura HI, Hruby VJ (1986) Design and synthesis of somatostatin analogs with high potency and specificity for mu opioid receptors. J Med Chem 29:2370–2375

    PubMed  CAS  Google Scholar 

  • Piercey MF, Einspahr FJ (1989) Spinal analgesic actions of kappa receptor agonists, U50,488H and spiradoline (U-62066). J Pharmacol Exp Ther 251:267–271

    PubMed  CAS  Google Scholar 

  • Porreca F, Cowan A, Raffa RB, Tallarida RJ (1982a) On the criteria for classifying opiate agonists in rats. J Pharm Pharmacol 34:525–526

    PubMed  CAS  Google Scholar 

  • Porreca F, Cowan A, Raffa RB, Tallarida RJ (1982b) Tolerance and cross-tolerance studies with morphine and ethylketocyclazocine. J Pharm Pharmacol 34:666–667

    PubMed  CAS  Google Scholar 

  • Porreca F, Mosberg HI, Hurst R, Hruby VJ, Burks TF (1984) Roles of mu, delta and kappa opioid receptors in spinal and supraspinal mediation of gastrointestinal transit effects and hot-plate analgesia in the mouse. J Pharmacol Exp Ther 230:341–348

    PubMed  CAS  Google Scholar 

  • Porreca F, Heyman JS, Mosberg HI, Omnaas JR, Vaught JL (1987) Role of mu and delta receptors in the supraspinal and spinal analgesic effects of [d-Pen2, d- Pen5]enkephalin in the mouse. J Pharmacol Exp Ther 241:393–400

    PubMed  CAS  Google Scholar 

  • Portoghese PS (1965) A new concept on the mode of interaction of narcotic analgesics with receptors. J Med Chem 8:609–616

    PubMed  CAS  Google Scholar 

  • Portoghese PS, Larson DL, Sayre LM, Fries DS, Takemori AE (1980) A novel opioid receptor site directed alkylating agent with irreversible narcotic antagonistic and reversible agonistic activities. J Med Chem 23:233–234

    PubMed  CAS  Google Scholar 

  • Portoghese PS, Sultana M, Takemori AE (1988) Naltrindole, a highly selective and potent nonpeptide δ opioid receptor antagonist. Eur J Pharmacol 146:185–186

    PubMed  CAS  Google Scholar 

  • Portoghese PS, Sutana M, Takemori AE (1990a) Design of peptidomimetic δ opioid receptor antagonists using the message-address concept. J Med Chem 33:1714–1720

    PubMed  CAS  Google Scholar 

  • Portoghese PS, Sultana M, Takemori AE (1990b) Naltrindole 5′-isothiocyanate: a nonequilibrium, highly selective δ opioid receptor antagonist. J Med Chem 33:1547–1548

    PubMed  CAS  Google Scholar 

  • Przewlocki R, Stala L, Greczek M, Shearman GT, Herz A (1983) Analgesic effects of μ -,δ - and Κ-opiate agonists and, in particular, dynorphin at the spinal level. Life Sci 33 Suppl 1:649–652

    Google Scholar 

  • Raffa RB, Vaught JL, Porreca F (1988a) pA2 analysis revisited: can equal pA2 values be compatible with multiple receptors? Trends Pharmacol Sci 10:183–185

    Google Scholar 

  • Raffa RB, Mathiasen JR, Brown DQ (1988b) μ-, but not δ-, opioid receptor- mediated antinociception in mice is attenuated by γ-irradiation. Brain Res 447:393–397

    PubMed  CAS  Google Scholar 

  • Roerig SC, Fujimoto JM, Tseng L-F (1988) Comparisons of descending pain inhibitory pathways activated by β-endorphin and morphine as characterized by supraspinal and spinal antinociceptive interactions in mice. J Pharmacol Exp Ther 247:1107–1113

    PubMed  CAS  Google Scholar 

  • Römer D, Buscher HH, Hill RC, Maurer R, Petcher TJ, Welle HBA, Bakel CCK, Akkerman AM (1980) Bremazocine: a potent, long-acting opiate kappa-agonist. Life Sci 27:971–978

    PubMed  Google Scholar 

  • Romer D, Buscher HH, Hill RC, Maurer R, Petcher TJ, Zeugner H, Benson W, Finner E, Milkowski W, Thies PW (1982) An opioid benzodiazepine. Nature 298:759–760

    PubMed  CAS  Google Scholar 

  • Sasson S, Kornetsky C (1986) Evidence for a supraspinal analgesic effect with cyclazocine and pentazocine. Life Sci 38:21–26

    PubMed  CAS  Google Scholar 

  • Satoh M, Kubota A, Iwama T, Wada T, Yasui M, Fujibayashi K, Takagi H (1983) Comparison of analgesic potencies of mu, delta and kappa agonists applied to various CNS regions relevant to analgesia in rats. Life Sci 33 Suppl 1:689–692

    Google Scholar 

  • Schmauss C (1987) Spinal κ-opioid receptor mediated antinociception is stimulus-specific. Eur J Pharmacol 137:197–205

    PubMed  CAS  Google Scholar 

  • Schmauss C, Yaksh TL (1984) Antinociception. II. Pharmacological profiles suggesting a differential association of mu, delta and kappa receptors with visceral chemical and cutaneous thermal stimuli in the rat. J Pharmacol Exp Ther 228:1–12

    PubMed  CAS  Google Scholar 

  • Schulz R, Faase E, Wuster M, Herz A (1979) Selective receptors for β-endorphin on the rat vas deferens. Life Sci 24:843–850

    PubMed  CAS  Google Scholar 

  • Schulz R, Wuster M, Herz A (1981) Pharmacological characterization of the epsilon opiate receptor. J Pharmacol Exp Ther 216:604–606

    PubMed  CAS  Google Scholar 

  • Shimohigashi Y, Costa T, Pfeiffer A, Herz A, Kimura H, Stammer CH (1987) Cyclopropyl-Phe4-enkephalin analogs: delta receptors in rat brain are different from those in mouse vas deferens. FEBS Lett 222:71–74

    PubMed  CAS  Google Scholar 

  • Shimohigashi Y, Takano Y, Kamiya H, Costa T, Herz A, Stammer CH (1988) A highly selective ligand for brain δ opiate receptors, a cyclopropyl-Phe4- enkephalin analog, suppresses μ receptor-mediated thermal analgesia by morphine. FEBS Lett 233:289–293

    PubMed  CAS  Google Scholar 

  • Shook JE, Pelton JT, Lemcke PK, Porreca F, Hruby VJ, Burks TF (1987) Mu opioid antagonist properties of a cyclic somatostatin octapeptide in vivo: identification of mu receptor-related functions. J Pharmacol Exp Ther 242:1–7

    PubMed  CAS  Google Scholar 

  • Shook JE, Kazmierski W, Wire WS, Lemcke PK, Hruby VJ, Burks TF (1988) Opioid receptor selectivity of β-endorphin in vitro and in vivo: mu, delta and epsilon receptors. J Pharmacol Exp Ther 246:1018–1025

    PubMed  CAS  Google Scholar 

  • Skingle M, Tyers MB (1980) Further studies on opiate receptors that mediate antinociception: tooth pulp stimulation in the dog. Br J Pharmacol 70:323–327

    PubMed  CAS  Google Scholar 

  • Smith CFC, Carter A (1987) Delta receptors in the rat vas deferens. Arch Int Pharmacodyn Ther 284:181–192

    Google Scholar 

  • Smith CFC, Ranee MJ (1983) Opiate receptors in the rat vas deferens. Life Sci 33 Suppl 1:327–330

    Google Scholar 

  • Smith DJ, Perrotti JM, Crisp T, Cabral MEY, Long JT, Scalzitti JM (1988) The μ opiate receptor is responsible for descending pain inhibition originating in the periaqueductal gray region of the rat brain. Eur J Pharmacol 156:47–54

    PubMed  CAS  Google Scholar 

  • Smits SE, Takemori AE (1970) Quantitative studies on the antagonism by naloxone of some narcotic antagonist analgesics. Br J Pharmacol 39:627–638

    PubMed  CAS  Google Scholar 

  • Sofuoglu M, Portoghese PS, Takemori AE (1991) Differential antagonism of delta opioid agonists by naltrindole (NTI) and its benzofuran analog (NTB) in mice: evidence for delta opioid receptor subtypes. J Pharmacol Exp Ther 257:676–680

    PubMed  CAS  Google Scholar 

  • Spiegel K, Pasternak GW (1984) Meptazinol: a novel μ1 selective opioid analgesic. J Pharmacol Exp Ther 228:414–419

    PubMed  CAS  Google Scholar 

  • Stevens CW, Yaksh TL (1986) Dynorphin A and related peptides administered intrathecally in the rat: a search for putative kappa-opiate receptor activity. J Pharmacol Exp Ther 238:833–837

    PubMed  CAS  Google Scholar 

  • Suh HH, Tseng L-F (1988) Intrathecal β-funaltrexamine antagonizes intracerebroventricular β-endorphin- but not morphine-induced analgesia in mice. J Pharmacol Exp Ther 245:587–593

    PubMed  CAS  Google Scholar 

  • Suh HH, Tseng L-F (1990) Delta but not mu-opioid receptors in the spinal cord are involved in antinociception induced by β-endorphin given intracerebroventricularly in mice. J Pharmacol Exp Ther 253:981–986

    PubMed  CAS  Google Scholar 

  • Suh HH, Tseng L-F, Li CH (1988) p-Endorphin-(l-27) antagonizes β-endorphin- but not morphine-, d-Pen2-d-Pen5-enkephalin- and U50,488H-induced analgesia in mice. Neuropharmacology 27:957–963

    PubMed  CAS  Google Scholar 

  • Suh HH, Fujimoto JM, Tseng LL-F (1989) Differential mechanisms mediating β-endorphin- and morphine-induced analgesia in mice. Eur J Pharmacol 168: 61–70

    PubMed  CAS  Google Scholar 

  • Taber RI (1974) Predictive value of analgesic assays in mice and rats. Adv Biochem Psychopharmacol 8:191–211

    Google Scholar 

  • Takemori AE, Portoghese PS (1987) Evidence for the interaction of morphine with K and 5 opioid receptors to induce analgesia in p-funaltrexamine treated mice. J Pharmacol Exp Ther 243:91–94

    PubMed  CAS  Google Scholar 

  • Takemori AE, Ho BY, Naeseth JS, Portoghese PS (1988) Nor-binaltorphimine, a highly selective kappa-opioid antagonist in analgesic and receptor binding assays. J Pharmacol Exp Ther 246:255–258

    PubMed  CAS  Google Scholar 

  • Tallarida RJ, Cowan A, Adler MA (1979) pA2 and receptor differentiation: a statistical analysis of competitive antagonism. Life Sci 25:637–654

    PubMed  CAS  Google Scholar 

  • Tiseo PJ, Geller EB, Adler MW (1988) Antinociceptive action of intracerebro- ventricularly administered dynorphin and other opioid peptides in the rat. J Pharmacol Exp Ther 246:449–453

    PubMed  CAS  Google Scholar 

  • Toth G, Kramer TH, Knapp R, Lui G, Davis P, Burks TF, Yamamura HI, Hruby VJ (1990) [d-Pen2, d-Pen5]enkephalin analogues with increased affinity and selectivity for δ opioid receptors. J Med Chem 33:249–253

    PubMed  CAS  Google Scholar 

  • Traynor J (1989) Subtypes of the κ-opioid receptor: fact or fiction? Trends Pharmcol Sci 10:52–53

    CAS  Google Scholar 

  • Tseng L-F, Fujimoto JM (1985) Differential actions of intrathecal naloxone on blocking the tail-flick inhibition induced by intraventricular β-endorphin and morphine in rats. J Pharmacol Exp Ther 232:74–79

    PubMed  CAS  Google Scholar 

  • Tseng L-F (1989) Intracerebroventricular administration of β-endorphin releases immunoreactive met-enkephalin from the spinal cord in cats, guinea pigs and mice. Neuropharmacology 28:1333–1339

    PubMed  CAS  Google Scholar 

  • Tyers MB (1980) A classification of opiate receptors that mediate antinociception in animals. Br J Pharmacol 69:503–512

    PubMed  CAS  Google Scholar 

  • Tyers MB (1983) Studies on the antinociceptive activities of mixtures of mu- and kappa-opiate receptor agonists and antagonists. Life Sci 31:1233–1236

    Google Scholar 

  • Unterwald E, Sasson S, Kornetsky C (1987) Evaluation of the supraspinal analgesic activity and abuse liability of ethylketocyclazocine. Eur J Pharmacol 133:275–281

    PubMed  CAS  Google Scholar 

  • Upton N, Sewell RDE, Spencer PSJ (1982) Differentiation of potent μ- and κ-opiate agonists using heat and pressure antinociceptive profiles and combined potency analysis. Eur J Pharmacol 78:421–429

    PubMed  CAS  Google Scholar 

  • Vanderah T, Wild KD, Takemori AE, Sultana M, Portoghese PS, Bowen WD, Mosberg HI, Porreca F (1992) Mediation of swim-stress antinociception by the opioid δ2 receptor in the mouse. J Pharmacol Exp Ther 262:190–197

    PubMed  CAS  Google Scholar 

  • Vaughn LK, Wire WS, Davis P, Shimohigashi Y, Toth G, Knapp RJ, Hruby VJ, Burks TF, Yamamura HI (1990) Differentiation between rat brain and mouse vas deferens delta opioid receptors. Eur J Pharmacol 177:99–101

    PubMed  CAS  Google Scholar 

  • Vaught JL, Mathiasen JR, Raffa RB (1988) Examination of the involvement of supraspinal and spinal mu and delta opioid receptors in analgesia using the mu receptor deficient CXBK mouse. J Pharmacol Exp Ther 245:13–16

    PubMed  CAS  Google Scholar 

  • Von Voigtlander PF, Lahti RA, Ludens JH (1983) U50488: a selective and structurally novel nonmu (kappa) opioid agonist. J Pharmacol Exp Ther 224:7–12

    Google Scholar 

  • Walker GE, Yaksh TL (1986) Studies on the effects of intrathalamically injected DADL and morphine on nociceptive thresholds and electroencephalographic activity: a thalamic δ receptor syndrome. Brain Res 383:1–14

    PubMed  CAS  Google Scholar 

  • Ward SJ, Takemori AE (1983) Relative involvement of mu, kappa and delta receptor mechanisms in opiate-mediated antinociception in mice. J Pharmacol Exp Ther 224:525–530

    PubMed  CAS  Google Scholar 

  • Ward SJ, Portoghese PS, Takemori AE (1982) Pharmacological characterization in vivo of the novel opiate, β-funaltrexamine. J Pharmacol Exp Ther 220:494–498

    PubMed  CAS  Google Scholar 

  • Wild KD, Porreca F (1991) Estimation of the efficacy of a series of opioid K agonists in the guinea pig isolated ileum and the mouse isolated vas deferens, (submitted)

    Google Scholar 

  • Wood PL, Rackham A, Richard J (1981) Spinal analgesia: comparison of the mu agonist morphine and the kappa agonist ethylketocyclazocine. Life Sci 28:2119–2125

    PubMed  CAS  Google Scholar 

  • Wüster M, Suhulz R, Herz A (1978) Specificity of opioids towards the μ, δ and ε-opiate receptors. Neurosci Lett 15:192–198

    Google Scholar 

  • Yoburn BC, Lufty K, Candido J (1991) Species differences in μ- and δ-opioid receptors. Eur J Pharmacol 193:105–108

    PubMed  CAS  Google Scholar 

  • Zimmerman DM, Leander JD (1990) Selective opioid receptor agonists and antagonists: research tools and potential therapeutic agents. J Med Chem 33:895–902

    PubMed  CAS  Google Scholar 

  • Zimmerman DM, Leander JD, Reel JK, Hynes MD (1987) Use of β-funaltrexamine to determine mu opioid receptor involvement in the analgesic activity of various opioid ligands. J Pharmacol Exp Ther 241:374–378

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Porreca, F., Burks, T.F. (1993). Supraspinal Opioid Receptors in Antinociception. In: Herz, A., Akil, H., Simon, E.J. (eds) Opioids II. Handbook of Experimental Pharmacology, vol 104 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77540-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77540-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77542-0

  • Online ISBN: 978-3-642-77540-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics