Skip to main content

Opioid Peptides in the Regulation of Anterior Pituitary Hormones

  • Chapter
Opioids II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 104 / 2))

Abstract

Extensive research over the last 20 years has shown that in addition to classic hypothalamic regulatory hormones (RHs) (Table 1), a variety of other peptides exist in the central nervous system (CNS) of mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler BA, Crowley WR (1984) Modulation of luteinizing hormone release and catecholamine activity by opiates in the female rat. Neuroendocrinology 38:248–253

    Article  PubMed  CAS  Google Scholar 

  • Algeri S, Consolazione A, Calderini G, Achilli G, Puche-Canas E, Garattini S (1978) Effect of the administration of (d-Ala2)-methionine-enkephalin on the serotonin metabolism in rat brain. Experientia 34:1488–1489

    Article  PubMed  CAS  Google Scholar 

  • Allolio B, Winkelmann W, Hipp FX, Kaulen D, Mies R (1982) Effects of a met-enkephalin analog on adrenocorticotropin (ACTH), growth hormone and prolactin in patients with ACTH hypersecretion. J Clin Endocrinol Metab 55:1–7

    Article  PubMed  CAS  Google Scholar 

  • Allolio B, Deuss U, Kaulen D, Leonhardt U, Kallabis D, Hamel E, Winkelmann W (1986) FK 33–824, a met-enkephalin analog, blocks corticotropin-releasing hormone-induced adrenocorticotropin secretion in normal subjects but not in patients with Cushing’s disease. J Clin Endocrinol Metab 63:1427–1431

    Article  PubMed  CAS  Google Scholar 

  • Arancibia S, Tapia-Arancibia L, Roussel JP, Assenmacher I, Astier H (1986) Effects of morphine on cold-induced TRH release from the median eminence of unanesthetized rats. Life Sci 38:59–66

    Article  PubMed  CAS  Google Scholar 

  • Arita J, Porter JC (1984) Relationship between dopamine release into hypophysial portal blood and prolactin release after morphine treatment in rats. Neuroendocrinology 38:62–67

    Article  PubMed  CAS  Google Scholar 

  • Bakke JL, Lawrence NL, Robinson S (1974) The effect of morphine on pituitary-thyroid function in the rat. Eur J Pharmacol 25:402–406

    Article  PubMed  CAS  Google Scholar 

  • Baumann MH, Rabii J (1990) Mu-selective opioid peptides stimulate prolactin release in lactating rats. J Neuroendocrinol 2:271–276

    Article  PubMed  CAS  Google Scholar 

  • Beltchez PE (1981) Functional and anatomical segregation of hypothalamic opiate receptors involved in prolactin and growth hormone secretion in cynomolgus monkeys. Life Sci 28:2961–2971

    Article  Google Scholar 

  • Bero LA, Scott NL, Kuhn CM (1987) Early ontogeny of к-opioid receptor regulation of prolactin secretion in the rat. Dev Brain Res 37:189–196

    Article  CAS  Google Scholar 

  • Blankstein J, Reyes FI, Winter JSD, Faiman C (1979) Failure of naloxone to alter growth hormone and prolactin levels in acromegalic and in hyperprolactinaemic patients. Clin Endocrinol (Oxf) 11:474–479

    Article  Google Scholar 

  • Brambilla F (1982) Hormonal changes in addiction. In: De Wied D, van Keep PA (eds) Hormones and the brain. MPT Press, Lancaster, p 313

    Google Scholar 

  • Brambilla F, Cazzullo CL, Bellodi L, De Maio D, Zanoboni A, Zanoboni-Muciaccia W (1979) Prolactin secretion and response to stimuli in male heroin addicts. Neuropsychobiology 5:294–300

    Article  PubMed  CAS  Google Scholar 

  • Brambilla F, Casanueva F, Lovati C, Peñalva A, Madeddu A, Martinez-Campos A, Muller EE (1981) Lack of tolerance in heroin addicts to the neuroendocrine effects of an enkephalin analogue. Life Sci 29:493–501

    CAS  Google Scholar 

  • Bruni JF, Van Vugt D, Marshall S, Meites J (1977) Effects of naloxone, morphine and methionine enkephalin on serum prolactin, luteinizing hormone, follicle stimulating hormone, thyroid stimulating hormone and growth hormone. Life Sci 21:481–486

    Article  Google Scholar 

  • Buckingham JC (1982) Secretion of corticotrophin and its hypothalamic releasing factor in response to morphine and opioid peptides. Neuroendocrinology 35:111–116

    Article  PubMed  CAS  Google Scholar 

  • Buckingham JC (1986) Stimulation and inhibition of corticotrophin releasing factor secretion by beta endorphin. Neuroendocrinology 42:148–152

    Article  PubMed  CAS  Google Scholar 

  • Buckingham JC, Cooper TA (1984) Influence of opioid substances on hypothalamo- pituitary adrenocortical activity in the rat. In: Delitala G, Motta M, Serio M (eds) Opioid modulation of endocrine function. Raven, New York, p 81

    Google Scholar 

  • Bueno L, Gue M, Fargeas MJ, Alvinerie M, Junien JL, Fiormamonti J (1989) Vagally mediated inhibition of acoustic stress-induced Cortisol release by orally administered к-opioid substances in dogs. Endocrinology 124:1788–1793

    Article  PubMed  CAS  Google Scholar 

  • Casanueva FF, Betti R, Frigerio C, Cocchi D, Mantegazza P, Muller EE (1980) Growth hormone-releasing effect of an enkephalin analog in the dog: evidence for cholinergic mediation. Endocrinology 106:1239–1245

    Article  PubMed  CAS  Google Scholar 

  • Casanueva FF, Spampinato S, Locatelli V, Betti R, Cocchi D, Ferri S, Muller EE (1981) Prolactin and growth hormone-releasing effects of enkephalins. In: Stark E, Makara GB, Halasz B, Rappay GY (eds) 28th International Congress of Physiological Sciences, Pergamon Press, Akademiai Kiadò, Budapest, p 303

    Google Scholar 

  • Castanas E, Jacquet P, Gunz G, Cantau P, Giraud P (1985) Direct action of opiates on bromocriptine-inhibited prolactin release by human prolactinoma cells in primary culture. J Clin Endocrinol Metab 61:963–968

    Article  PubMed  CAS  Google Scholar 

  • Cavagnini F, Dubini A, Motta T, Danesi L, Giovannini P, Invitti C, Maraschini C, Genazzani AR, Muller EE (1984) Effect of FK 33–824, a met-enkephalin analogue, on anterior pituitary secretion in patients with deranged hypothalamic-pituitary function. In: Muller EE, Genazzani AR (eds) Central and peripheral endorphins. Raven, New York, p 181

    Google Scholar 

  • Cella SG, Munari L, Muller EE (1985) Blockade of α2-adrenoceptors prevents the growth hormone releasing effect of FK 33–824 in the dog. Horm Metab Res 17:379–380

    Article  PubMed  CAS  Google Scholar 

  • Cheung CY (1984) Does β-endorphin modulate basal and dopamine-inhibited prolactin release by an action at the anterior pituitary? Neuroendocrinology 39:489–495

    Article  PubMed  CAS  Google Scholar 

  • Ching M (1983) Morphine suppresses the proestrous surge of GnRH in pituitary portal plasma of rats. Endocrinology 112:2209–2211

    Article  PubMed  CAS  Google Scholar 

  • Cicero TJ, Schainker BA, Meyer ER (1979) Endogenous opioids participate in the regulation of the hypothalamic-pituitary-luteinizing hormone axis and testosterone’s negative feedback control of luteinizing hormone. Endocrinology 104:1286–1291

    Article  PubMed  CAS  Google Scholar 

  • Cicero TJ, Wilcox CE, Bell RD, Meyer ER (1980) Naloxone-induced increases in serum luteinizing hormone in the male: mechanisms of action. J Pharmacol Exp Ther 212:573–578

    PubMed  CAS  Google Scholar 

  • Cicero TJ, Meyer ER, Bell RD (1988) Characterization and possible opioid modulation of N-methyl-d-aspartic acid induced increases in serum luteinizing hormone levels in the developing male rat. Life Sci 42:1725–1731

    Article  PubMed  CAS  Google Scholar 

  • Clough RW, Hoffman G, Sladek CD (1990) Synergistic interaction between opioid receptor blockade and alpha-adrenergic stimulation on luteinizing hormone- releasing hormone (LHRH) secretion in vitro. Neuroendocrinology 51:131138

    Google Scholar 

  • Cocchi D, Santagostino A, Gil-Ad I, Ferri S, Muller EE (1977) Leu-enkephalin- stimulated growth hormone and prolactin release in the rat: comparison with the effect of morphine. Life Sci 20:2041–2046

    Article  PubMed  CAS  Google Scholar 

  • Cocchi D, Degli Uberti EC, Trasforini G, Salvadori S, Tomatis R, Torpia R, Perelli-Cippo R (1985) Prolactin releasing and luteinizing hormone inhibiting activity of dermorphin shorter homologues in the rat. Life Sci 36:1707–1713

    Article  PubMed  CAS  Google Scholar 

  • Costa E (1984) Interactions between enkephalins and other putative transmitters. In: Muller EE, Genazzani AR (eds) Central and peripheral endorphins: basic and clinical aspects. Raven, New York, p 77

    Google Scholar 

  • Cusan L, Dupont A, Kledzik GS, Labrie F, Coy DH, Schally AV (1977) Potent prolactin and GH releasing activity of more analogues of met-enkephalin. Nature 268:544–547

    Article  PubMed  CAS  Google Scholar 

  • Degli Uberti EC, Trasforini G, Salvadori S, Tomatis R, Margutti A, Bianconi M, Rotola C, Pansini R (1983) Prolactin-releasing activity of dermorphin, a new synthetic potent opiate-like peptide, in normal human subjects. J Clin Endocrinol Metab 56:1032–1034

    Article  PubMed  CAS  Google Scholar 

  • Delitala G, Grossman A, Besser GM (1981) Changes in pituitary hormone levels induced by met-enkephalin in man - the role of dopamine. Life Sci 29:1537–1544

    Article  PubMed  CAS  Google Scholar 

  • Delitala G, Grossman A, Besser GM (1983) Differential effects of opiate peptides and alkaloids on anterior pituitary hormone secretion. Neuroendocrinology 37:275–279

    Article  PubMed  CAS  Google Scholar 

  • Delitala G, Tomasi P, Palermo M, Ross RJM, Grossman A, Besser GM (1989) Opioids stimulate growth hormone (GH) release in man independently of GH- releasing hormone. J Clin Endocrinol Metab 69:356–358

    Article  PubMed  CAS  Google Scholar 

  • Delitala G, Palermo M, Tomasi P, Besser GM, Grossman A (1991) Adrenergic stimulation of the human pituitary-adrenal axis is attenuated by an analog of met-enkephalin. Neuroendocrinology 53:41–46

    Article  PubMed  CAS  Google Scholar 

  • del Pozo E, Martin-Perez J, Stadelmann A, Girard J, Brownell J (1980) Inhibitory action of a met-enkephalin on ACTH release in man. J Clin Invest 65:1531–1534

    Article  PubMed  Google Scholar 

  • Demarest KT, Moore KE (1981) Disruption of 5-hydroxytryptamine neuronal function blocks the action of morphine on tuberoinfundibular neurons. Life Sci 28:1345–1351

    Article  PubMed  CAS  Google Scholar 

  • De Souza EB, Van Loon GR, (1982) D-Ala-met-enkephalinamide, a potent opioid peptide, alters pituitary adrenocortical secretion in rats. Endocrinology 111:1483–1489

    Article  PubMed  Google Scholar 

  • Deyo SN, Swift RM, Miller RJ (1979) Morphine and endorphins modulate dopamine turnover in rat median eminence. Proc Natl Acad Sci USA 76:3006–3009

    Article  PubMed  CAS  Google Scholar 

  • Drouva SV, Epelbaum J, Tapia-Aranabia L, Leplante E, Kordon C (1981) Opiate receptors modulate LHRH and SRIF release from rat mediobasal hypothalamus. Neuroendocrinology 32:163–167

    Article  PubMed  CAS  Google Scholar 

  • Dueker EM, Rexhausen U, Wuttke W (1982) β-Endorphin stimulates dopamine- inhibited prolactin release at the pituitary level. Acta Endocrinol (Copenh) 246 Suppl: 123–124

    Google Scholar 

  • Dupont A, Cusan L, Ferland L, Coy DH, Labrie F (1979) Stimulatory effects of endorphins and their analogs on prolactin and growth hormone secretion. In: Tolis G, Labrie F, Martin JB (eds) Clinical neuroendocrinology. Raven, New York, p 161

    Google Scholar 

  • Eisenberg RM (1980) Effects of naloxone on plasma corticosterone in the opiate naive rat. Life Sci 26:935–942

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg RM (1984) Effects of naltrexone on plasma corticosterone in opiate naïve rats: a central action. Life Sci 34:1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Engler D, Pham T, Fullerton MJ, Funder JW, Clarke IJ (1988) Studies of the regulation of the hypothalamic-pituitary-adrenal axis in sheep with hypothalamic-pituitary disconnection. I. Effect of an audiovisual stimulus and insulin-induced hypoglycemia. Neuroendocrinology 48:551

    Google Scholar 

  • Enjalbert A, Ruberg M, Fiore L, Arancibia S, Priam M, Kordon C (1979) Effect of morphine on dopamine inhibition of pituitary prolactin release in vitro. J Pharmacol 53:211–212

    CAS  Google Scholar 

  • Ferland LK, Fuxe K, Eneroth P, Gustafsson J-A, Skett P (1977) Effects of methionine-enkephalin on prolactin release and catecholamine levels and turnover in the median eminence. Eur J Pharmacol 43:89–90

    Article  PubMed  CAS  Google Scholar 

  • Gaillard RC, Grossman A, Smith R, Rees LH, Besser GM (1981) The effects of a met-enkephalin analogue on ACTH, β-LPH, β-endorphin and met-enkephalin in patients with adrenocortical disease. Clin Endocrinol (Oxf) 14:471–478

    Article  CAS  Google Scholar 

  • Gay VL, Plant TM (1987) N-Methyl-d,l-aspartate elicits hypothalamic gonadotropin-releasing hormone release in prepubertal male rhesus monkeys (Macaca mulatto). Endocrinology 120:2289–2292

    Article  PubMed  CAS  Google Scholar 

  • George R (1971) Hypothalamus: anterior pituitary gland. In: Clouet DH (ed) Narcotic drug: biochemical pharmacology. Plenum, New York, p 233

    Google Scholar 

  • George R, Kokka N (1976) The effects of narcotics on growth hormone, ACTH and TSH secretion. In: Ford DH, Clouet DH (eds) Tissue responses to addictive drugs. Spectrum, New York, p 527

    Google Scholar 

  • George R, Lomax P (1965) The effects of morphine, chlorpromazine and reserpine on pituitary-thyroid activity in rats. J Pharmacol Exp Ther 150:129–134

    PubMed  CAS  Google Scholar 

  • Gillies GE, Puri A, Linton EA, Lowry PJ (1984) Comparative chromatography of hypothalamic corticotrophin-releasing factors. Neuroendocrinology 38:17–22

    Article  PubMed  CAS  Google Scholar 

  • Gindoff PR, Ferin M (1987) Endogenous opioid peptides modulate the effect of corticotropin-releasing factor on gonadotropin release in the primate. Endocrinology 121:837–842

    Article  PubMed  CAS  Google Scholar 

  • Giudici D, D’Urso D, Falaschi P, Negri L, Melchiorri P, Motta M (1984) Dermorphin stimulates prolactin secretion in the rat. Neuroendocrinology 39:236–244

    Article  PubMed  CAS  Google Scholar 

  • Goldstein A, Ghazurossian VE (1980) Immunoreactive dynorphin in pituitary and brain. Proc Natl Acad Sci USA 77:6207–6210

    Article  PubMed  CAS  Google Scholar 

  • Goldstein A, Lowney LI, Pal BK (1971) Specific and nonspecific interactions of the morphine congener levorphanol in subcellular fractions of mouse brain. Proc Natl Acad Sci USA 68:1742–1747

    Article  PubMed  CAS  Google Scholar 

  • Grandison L, Guidotti A (1979) Regulation of prolactin release by endogenous opiates. Nature 270:357–359

    Article  Google Scholar 

  • Grandison L, Fratta W, Guidotti A (1980) Location and characterization of opiate receptors regulating pituitary secretion. Life Sci 26:1633–1642

    Article  PubMed  CAS  Google Scholar 

  • Grossman A, Besser GM (1982) Opiates control ACTH through a noradrenergic mechanism. Clin Endocrinol (Oxf) 17:287–290

    Article  CAS  Google Scholar 

  • Grossman A, Clement-Jones V (1983) Opiate receptors: enkephalins and endorphins. J Clin Endocrinol Metab 12:31–56

    Article  CAS  Google Scholar 

  • Grossman A, Stubbs WA, Gaillard RC, Delitala G, Rees LH, Besser GM (1981) Studies of the opiate control of prolactin, GH and TSH. Clin Endocrinol (Oxf) 14:381–386

    Article  CAS  Google Scholar 

  • Grossman A, Gaillard RC, McCartney P, Rees LH, Besser GM (1982a) Opiate modulation of the pituitary-adrenal axis: effects of stress and circadian rhythm. Clin Endocrinol (Oxf) 17:279–286

    Article  CAS  Google Scholar 

  • Grossman A, West S, Williams J, Evans J, Rees LH, Besser GM (1982b) The role of opiate peptides in the control of prolactin in puerperium, and TSH in primary hypothyroidism. Clin Endocrinol (Oxf) 16:317–320

    Article  CAS  Google Scholar 

  • Grossman A, Bouloux P, Price P, Drury PL, Lam KSL, Turner T, Thomas J, Besser GM, Sutton J (1984) The role of opioid peptides in the hormonal responses to acute exercise in man. Clin Sci 67:483–491

    PubMed  CAS  Google Scholar 

  • Grossman A, Clement-Jones V, Besser GM (1985) Clinical implications of endogenous opioid peptides. In: Muller EE, MacLeod RM, Frohman LA (eds) Neuroendocrine perspectives, vol 4. Elsevier, Amsterdam, p 243

    Google Scholar 

  • Gudelsky GA, Porter JC (1979) Morphine- and opioid peptide-induced inhibition of the release of dopamine from tuberoinfundibular neurons. Life Sci 25:1697–1702

    Article  PubMed  CAS  Google Scholar 

  • Gue M, Honde C, Junien JL, Alvinerie M, Bueno L (1988) CNS blockade of acoustic stress-induced gastric motor inhibition by kappa opiate agonists in conscious dog. Am J Physiol 254:G802

    PubMed  CAS  Google Scholar 

  • Hashimoto K, Suemaru S, Ono N, Hattori T, Inoue H, Takano T, Sugawara M, Kageyama J, Ota Z (1987) Dual effects of (d-Ala2, Met5)-enkephalinamide on CRF and ACTH secretion. Peptides 8:113–117

    Article  PubMed  CAS  Google Scholar 

  • Haskins JT, Gudelsky GA, Moss RL, Porter JC (1981) Iontophoresis of morphine into the arcuate nucleus: effects on dopamine concentration in hypophysial portal plasma and serum prolactin concentrations. Endocrinology 108:761–771

    Article  Google Scholar 

  • Herkenham M, Rice KC, Jacobson AE, Rothman RB (1986) Opiate receptors in rat pituitary are confined to the neural lobe and are exclusively kappa. Brain Res 382:365–371

    Article  PubMed  CAS  Google Scholar 

  • Herz A (1984) Multiple endorphins as natural ligands of multiple opioid receptors. In: Muller EE, Genazzani AR (eds) Central and peripheral endorphins. Raven, New York, p 43

    Google Scholar 

  • Holaday JW, Gilbeau PM, Smith CG, Pennington LL (1984) Multiple opioid receptors in the regulation of neuroendocrine responses in the conscious rat and monkey. In: Delitala G, Motta M, Serio M (eds) Opioid modulation of endocrine function. Raven, New York, p 21

    Google Scholar 

  • Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–579

    Article  PubMed  CAS  Google Scholar 

  • Ieiri T, Chen HT, Campbell GA, Meites J (1980a) Effects of naloxone and morphine on the proestrous surge of prolactin and gonadotropins in the rat. Endocrinology 106:1568–1570

    Article  PubMed  CAS  Google Scholar 

  • Ieiri T, Chen HT, Meites J (1980b) Naloxone stimulation of luteinizing hormone release in prepubertal female rats: role of serotoninergic system. Life Sci 26:1269–1274

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka B, Quigley ME, Yen SSC (1983) Pituitary hormone release in response to food ingestion: evidence for neuroendocrine signals from gut to brain. J Clin Endocrinol Metab 57:1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Iweengar S, Kim HS, Wood PL (1986) Kappa opiate agonists modulate the hypothalamic pituitary adrenocortical axis in the rat. J Pharmacol Exp Ther 238:429–434

    Google Scholar 

  • Johnston CA, Moore KE (1981) Characteristics of 5-hydroxytryptaminergic neurons in discrete regions of rat hypothalamus. Fed Proc 40:266–276

    Google Scholar 

  • Judd AM, Hedge GA (1982) The roles of the opioid peptides in controlling thyroid stimulating hormone release. Life Sci 31:2529–2536

    Article  PubMed  CAS  Google Scholar 

  • Judd AM, Hedge GA (1983) Direct pituitary stimulation of thyrotropin secretion by opioid peptides. Endocrinology 113:706–710

    Article  PubMed  CAS  Google Scholar 

  • Kalra SP (1981) Neural loci involved in naloxone-induced luteinizing hormone release: effect of a norepinephrine synthesis inhibitor. Endocrinology 109:1805–1810

    Article  PubMed  CAS  Google Scholar 

  • Kalra SP, Leadem CA (1984) Control of luteinizing hormone secretion by endogenous opioid peptides. In: Delitala G, Motta M, Serio M (eds) Opioid modulation of endocrine function. Raven, New York, p 171

    Google Scholar 

  • Kalra SP, Simpkins JW (1981) Evidence for noradrenergic mediation of opioid effects on luteinizing hormone secretion. Endocrinology 109:776–782

    Article  PubMed  CAS  Google Scholar 

  • Kamegai J, Wakabayashi I, Sugihara H, Minami S, Kitamura T, Yamada J (1991) Growth hormone secretion in stalk-sectioned rats. Acta Endocrinol 124:700–706

    PubMed  CAS  Google Scholar 

  • Kapoor R, Willoughby JO (1990) Activation of opioid receptors in the mediobasal hypothalamus stimulates prolactin secretion in the conscious rat. J Neuroendocrinol 2:347–350

    Article  PubMed  CAS  Google Scholar 

  • Kesner JS, Kaufman JM, Wilson RC, Kuroda G, Knobil E (1986) On the short-loop feedback regulation of the hypothalamic luteinizing hormone releasing hormone ‘pulse generator’ in the rhesus monkey. Neuroendocrinology 42:109–111

    Article  PubMed  CAS  Google Scholar 

  • Kley HK, Oellerich M, Wiegelman W, Herman J, Rudorff KH, Nischlag E, Kruskemper HL (1977) The effect of methadone on hypophyseal and peripheral glandular hormones during withdrawal. Horm Metab Res 9:484–488

    Article  PubMed  CAS  Google Scholar 

  • Koenig JL, Krulich L (1984) Differential role of multiple opioid receptors in the regulation of secretion of prolactin and growth hormone in rats. In: Delitala G, Motta M, Serio M (eds) Opioid modulation of endocrine function. Raven, New York, p 89

    Google Scholar 

  • Koenig JL, Mayfield MA, Coppings RJ, McCann SM, Krulich L (1980) Role of central nervous system neurotransmitters in mediating the effects of morphine on growth hormone and prolactin secretion in the rat. Brain Res 197:453–468

    Article  PubMed  CAS  Google Scholar 

  • Krulich L, Koenig JL, Conway S, McCann SM, Mayfield MA (1986a) Opioid k receptors and the secretion of prolactin (PRL) and growth hormone (GH) in the rat. Neuroendocrinology 42:75–81

    Article  PubMed  CAS  Google Scholar 

  • Krulich L, Koenig JI, Conway S, McCann SM, Mayfield MA (1986b) Opioid k receptors and the secretion of prolactin (PRL) and growth hormone (GH) in the rat. Neuroendocrinology 42:82–87

    Article  PubMed  CAS  Google Scholar 

  • Lamberts SWJ, Oosterom R, Verleun T, Bons EG, Uitterlinden P (1981) A met- enkephalin analog inhibits adrenocorticotropin secretion by cultured pituitary cells from a patient with Nelson’s syndrome. J Clin Endocrinol Metab 53:1084–1086

    Article  PubMed  CAS  Google Scholar 

  • Lamberts SWJ, Janssens ENW, Bons EG, Uitterlinden P, Zuiderwijk JM, del Pozo E (1983) The met-enkephalin analog FK 33–824 directly inhibits ACTH release by the rat pituitary gland in vitro. Life Sci 32:1167–1172

    Article  PubMed  CAS  Google Scholar 

  • Leadem CA, Kalra SP (1983) The effect of various opiate receptor agonists on luteinizing hormone (LH) and prolactin (PRL) secretion in ovariectomized rats (Abstr). 65th Annual Meeting of the Endocrine Society, San Antonio, p 163

    Google Scholar 

  • Leadem CA, Yagenova SV (1987) Effects of specific activation of mu-, delta- and kappa-opioid receptors on the secretion of luteinizing hormone and prolactin in the ovariectomized rat. Neuroendocrinology 45:109–117

    Article  PubMed  CAS  Google Scholar 

  • Li CH, Chung D (1976) Isolation and structure of an untriakontapeptide with opiate activity from camel pituitary glands. Proc Natl Acad Sci USA 73:1145–1148

    Article  PubMed  CAS  Google Scholar 

  • Locatelli V, Andersson K, Fuxe K, Eneroth P (1980) Discrete changes in dopamine and noradrenaline levels and turnover in various hypothalamic nuclei following systemic treatment with the synthetic enkephalin analogue FK 33–824 in rats and their possible relationship to FK 33–824 induced changes in the secretion of adenohypophyseal hormones. Neuroendocrinol Lett 2:7–18

    CAS  Google Scholar 

  • Login IS, MacLeod RM (1979) Failure of opiates to reverse dopamine inhibition of prolactin secretion in vitro. Eur J Pharmacol 60:253–255

    Article  PubMed  CAS  Google Scholar 

  • Lomax P, George R (1966) Thyroid activity following administration of morphine in rats with hypothalamic lesions. Brain Res 2:361–367

    Article  PubMed  CAS  Google Scholar 

  • Lomax P, Kokka N, George R (1970) Thyroid activity following intracerebral injection of morphine in the rat. Neuroendocrinology 6:146–152

    Article  PubMed  CAS  Google Scholar 

  • Lymangrover JR, Dokas LA, Kong A, Martin R, Saffran M (1981) Naloxone has a direct effect on the adrenal cortex. Endocrinology 109:1132–1137

    Article  PubMed  CAS  Google Scholar 

  • Mallory DS, Gallo RV (1990) Medial preoptic-anterior hypothalamic area involvement in the suppression of pulsatile LH release by a mu-opioid agonist in the ovariectomized rat. Brain Res Bull 25:251–257

    Article  PubMed  CAS  Google Scholar 

  • Mannisto PT, Rauhla P, Tuominen R, Mattila J (1984) Dual action of morphine on cold-stimulated thyrotropin secretion in male rats. Life Sci 35:1101–1107

    Article  PubMed  CAS  Google Scholar 

  • Martin JB, Tannenbaum G, Willoughby JO, Renaud LP, Brazeau P (1975) Function of the CNS in regulation of pituitary GH Secretion. In: Motta M, Crosignani PG, Martini L (eds) Hypothalamic hormones. Academic, New York, p 217

    Google Scholar 

  • Martin JB, Tolis G, Woods I, Guyda H (1979) Failure of naloxone to influence physiological growth hormone and prolactin secretion. Brain Res 168:210–215

    Article  PubMed  CAS  Google Scholar 

  • Matsushita N, Kato K, Katakami H, Shimazu A, Yanaihara H, Imura H (1981) Stimulation of growth hormone release by vasoactive intestinal polypeptide from human pituitary adenomas in vitro. J Clin Endocrinol Metab 53:1297–1300

    Article  PubMed  CAS  Google Scholar 

  • May P, Mittler J, Manousian A, Ertel N (1979) TSH release inhibiting activity of leucine-enkephalin. Horm Metab Res 11:30–33

    Article  PubMed  CAS  Google Scholar 

  • Mayer G, Wessel J, Köbberling J (1980) A failure of naloxone to alter exercise- induced growth hormone and prolactin release in normal men. Clin Endocrinol (Oxf) 13:413–416

    Article  CAS  Google Scholar 

  • McCann SM (1982) The role of brain peptides in the control of anterior pituitary hormone secretion. In: Muller EE, MacLeod RM (eds) Neuroendocrine perspectives, vol 1. Elsevier, Amsterdam, p 1

    Google Scholar 

  • Miki N, Sonntag WB, Forman LJ, Meites J (1981) Suppression by naloxone of rise in plasma growth hormone and prolactin induced by suckling. Proc Soc Exp Biol Med 168:330–333

    PubMed  CAS  Google Scholar 

  • Millard WJ, Martin JB (1984) Opioid modulation of human growth hormone secretion. In: Delitala G, Motta M, Serio M (eds) Opioid modulation of endocrine function. Raven, New York, p 111

    Google Scholar 

  • Miller MA, Clifton DK, Steiner RA (1985) Noradrenergic and endogenous opioid pathways in the regulation of luteinizing hormone secretion in the male rat. Endocrinology 117:544–548

    Article  PubMed  CAS  Google Scholar 

  • Mitsuma T, Nogimori T (1983a) Effects of leucine-enkephalin on hypothalamic pituitary-thyroid axis in rats. Life Sci 32:241–248

    Article  PubMed  CAS  Google Scholar 

  • Mitsuma T, Nogimori T (1983b) Dynorphin (1–13) effects on thyrotrophin-releasing hormone and thyrotrophin secretion in rats. Acta Endocrinol (Copenh) 103:359–364

    CAS  Google Scholar 

  • Moore KE, Johnston CA (1982) The median eminence: aminergic control mechanisms. In: Muller EE, MacLeod RM (eds) Neuroendocrine perspectives, vol 1. Elsevier, Amsterdam, p 23

    Google Scholar 

  • Mor A, Pradelles P, Delfour A, Montagne JJ, Quintero FL, Conrath M, Nicolas P (1990) Evidence for pro-dermorphin processing products in rat tissues. Biochem Biophys Res Commun 170:30–38

    Article  PubMed  CAS  Google Scholar 

  • Moretti C, Fabbri A, Gnessi L, Cappa M, Calzolari A, Fraioli F, Grossman A, Besser GM (1983) Naloxone inhibits exercise-induced release of prolactin and growth hormone in athletes. Clin Endocrinol (Oxf) 18:135–138

    Article  CAS  Google Scholar 

  • Morley JE, Baranetsky NG, Wingert TD, Carlson HE, Hershman JM, Melmed S, Levin SR, Jamison KR, Weitzman R, Chang RJ, Varner AA (1980) Endocrine effects of naloxone-induced opiate receptor blockade. J Clin Endocrinol Metab 50:251–257

    Article  PubMed  CAS  Google Scholar 

  • Morley JE, Willeubring ML, Krahu DD, Carlson GA, Briggs JE, Levine AS, Shafer RB (1984) Opioid control of thyroid function. In: Delitala G, Motta M, Serio M (eds) Opioid modulation of endocrine function. Raven, New York, p 267

    Google Scholar 

  • Moyse E, Pasquini F, Quirion R, Beaudet A (1986) 125I FK 33–824: a selective probe for radioautographic labeling of µ opioid receptors in the brain. Peptides (Fayetteville) 7:351–355

    Article  CAS  Google Scholar 

  • Müller EE, Nistico’ G (1989) Brain messengers and the pituitary. Academic, San Diego

    Google Scholar 

  • Negri L, Melchiorri P, Erspamer GF, Erspamer V (1981) Radioimmunoassay of dermorphin-like peptides in mammalian and nonmammalian tissues. Peptides 2 Suppl 2:45–49

    CAS  Google Scholar 

  • Nikolarakis K, Pfeiffer A, Stalla GK, Herz A (1987) The role of CRF in the release of ACTH by opiate agonists and antagonists in rats. Brain Res 421:373–376

    Article  PubMed  CAS  Google Scholar 

  • Oyama T, Yamaya R, Jin T, Kudo T (1982) Effect of exogenous β-endorphin on anterior pituitary hormone secretion in man. Acta Endocrinol (Copenh) 99:913

    Google Scholar 

  • Panerai AE, Casanueva F, Martini A, Mantegazza P, Di Giulio AM (1981) Opiates act centrally on GH and PRL release. Endocrinology 108:2400–2402

    Article  PubMed  CAS  Google Scholar 

  • Panerai AE, Martini A, Casanueva FF, Petraglia F, Di Giulio AM, Mantegazza P (1983) Opiates and their antagonists modulate luteinizing hormone acting outside the blood-brain barrier. Life Sci 32:1751–1756

    Article  PubMed  CAS  Google Scholar 

  • Panerai AE, Petraglia F, Sacerdote P, Genazzani AR (1985) Mainly μ-opiate receptors are involved in luteinizing hormone and prolactin secretion. Endocrinology 117:1096–1099

    Article  PubMed  CAS  Google Scholar 

  • Pang CN, Zimmermann E, Sawyer CH (1977) Morphine inhibition of the preovulatory surges of plasma luteinizing hormone and follicle stimulating hormone in the rat. Endocrinology 101:1726–1732

    Article  PubMed  CAS  Google Scholar 

  • Pelosi MA, Sama JC, Caterini H, Kaminetzki HA (1974) Galactorrhea-amenorrhea syndrome associated with heroin addiction. Am J Obstet Gynecol 118:966–970

    PubMed  CAS  Google Scholar 

  • Penalva A, Villanueva L, Casanueva FF, Cavagnini F, Gomez-Pan A, Muller EE (1983) Cholinergic and histaminergic involvement in the growth hormone- releasing effect of the enkephalin analog FK 33–824 in man. Psychopharmacology (Berl) 80:120–123

    Article  CAS  Google Scholar 

  • Pert CB, Snyder SH (1973) Opiate receptor: demonstration in nervous tissue. Science 179:1011–1014

    Article  PubMed  CAS  Google Scholar 

  • Petraglia F, Vale W, Rivier C (1986) Opioids act centrally to modulate stress- induced decrease in luteinizing hormone in the rat. Endocrinology 119:2445–2449

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer A, Braun S, Mann K, Meyer HD, Brantl V (1986) Anterior pituitary hormone response to a к-opioid agonist in man. J Clin Endocrinol Metab 62:181–185

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer DG, Pfeiffer A, Almeida OFX, Herz A (1988) Opiate suppression of LH secretion involves central receptor different from those mediating opiate effects on prolactin secretion. J Endocrinol 114:469–476

    Article  Google Scholar 

  • Ragavan VV, Frantz AG (1981) Opioid regulation of prolactin secretion: evidence for a specific role of β-endorphin. Endocrinology 109:1769–1771

    Article  PubMed  CAS  Google Scholar 

  • Rauhala P, Tuominen RK, Mannisto PT (1987) Opioid peptides in the regulation of TSH and prolactin secretion in the rat. Acta Endocrinol (Copenh) 114:383–388

    CAS  Google Scholar 

  • Rittmaster RS, Cuttler GB, Sobel DO, Goldstein DS, Koppelman MC, Loriaux DL, Chrousos GP (1985) Morphine inhibits the pituitary-adrenal response to ovine corticotrophin-releasing hormone in normal subjects. J Clin Endocrinol Metab 60:891

    Article  PubMed  CAS  Google Scholar 

  • Rivier C, Brown M, Vale W (1977a) Effect of neurotensin, Substance P and morphine sulphate on secretion of prolactin and growth hormone in the rat. Endocrinology 100:751–754

    Article  PubMed  CAS  Google Scholar 

  • Rivier C, Vale W, Ling N, Brown M, Guillemin R (1977b) Stimulation in vivo of the secretion of prolactin and growth hormone by β-endorphin. Endocrinology 100:238–241

    Article  PubMed  CAS  Google Scholar 

  • Ruszas C, Mess B (1983) Opioidergic regulation of thyroid activity: possible interference with the serotonergic system. Psychoneuroendocrinology 8:89–94

    Article  Google Scholar 

  • Shaar CJ, Frederickson RCA, Dininger NB, Jackson L (1977) Enkephalin analogues and naloxone modulate the release of growth hormone and prolactin. Evidence for regulation by an endogenous opioid peptide in brain. Life Sci 21:853–860

    Article  PubMed  CAS  Google Scholar 

  • Sharp B, Morley E, Carlson HE, Gordon J, Briggs J, Melmed S, Hershman JM (1981) The role of opiates and endogenous opioid peptides in the regulation of rat TSH secretion. Brain Res 219:335–344

    Article  PubMed  CAS  Google Scholar 

  • Spampinato S, Locatelli V, Cocchi D, Vicentini L, Bajusz S, Ferri S, Muller EE (1979) Involvement of brain serotonin in the prolactin releasing effect of opioid peptides. Endocrinology 105:163–170

    Article  PubMed  CAS  Google Scholar 

  • Spiegel K, Kourides IA, Pasternak G (1982) Prolactin and growth hormone release by morphine in the rat: different receptor mechanisms. Science 217:745–747

    Article  PubMed  CAS  Google Scholar 

  • Spiler IJ, Molitch ME (1980) Lack of modulation of pituitary hormone stress response by neural pathways involving opiate receptors. J Clin Endocrinol Metab 50:516–520

    Article  PubMed  CAS  Google Scholar 

  • Stubbs WA, Delitala G, Jones A, Jeffcoate WJ, Edwards CRW, Rater SJ, Besser GM, Bloom SR, Alberti KGMM (1978) Hormonal and metabolic responses to an enkephalin analogue in normal man. Lancet 2:1225–1227

    Article  PubMed  CAS  Google Scholar 

  • Tannenbaum GS, Panerai AE, Friesen HG (1979) Failure of β-endorphin antiserum, naloxone and naltrexone to alter physiologic growth hormone and insulin secretion. Life Sci 25:1983–1990

    Article  PubMed  CAS  Google Scholar 

  • Tapia-Arancibia L, Astier H (1983) Opiate inhibition of K+-induced TRH release from superfused mediobasal hypothalami in rats. Neuroendocrinology 37:166–168

    Article  PubMed  CAS  Google Scholar 

  • Tolis G, Hickey J, Guyda H (1975) Effects of morphine on serum growth hormone, Cortisol, prolactin and thyroid stimulating hormone in man. J Endocrinol Metab 41:797–800

    Article  CAS  Google Scholar 

  • Tsagarakis S, Navara PL, Rees LH, Besser GM, Grossman A (1989) Morphine directly modulates the release of stimulated corticotropin-releasing factor-41 from rat hypothalamus in vitro. Endocrinology 124:2330–2335

    Article  PubMed  CAS  Google Scholar 

  • Tsagarakis S, Rees LH, Besser GM, Grossman A (1990) Opiate receptor subtype regulation of CRF-41 release from rat hypothalamus in vitro. Neuroendocrinology 51:599–605

    Article  PubMed  CAS  Google Scholar 

  • Van Loon GR, De Souza EB (1978) Effects of β-endorphin on brain serotonin metabolism. Life Sci 23:971–978

    Article  PubMed  Google Scholar 

  • Van Vugt DA, Meites J (1980) Influence of endogenous opiates on anterior pituitary function. Fed Proc 39:2533–2538

    PubMed  Google Scholar 

  • Van Vugt DA, Aylsworth CF, Sylvester PW, Leung FC, Meites J (1981) Evidence for hypothalamic noradrenergic involvement in naloxone-induced stimulation of luteinizing hormone release. Neuroendocrinology 33:261–264

    Article  PubMed  Google Scholar 

  • Volavka J, Cho D, Mallya A, Bauman L (1979) Naloxone increases ACTH and Cortisol levels in man. N Engl J Med 300:1056–1057

    PubMed  CAS  Google Scholar 

  • Von Graffenried B, del Pozo E, Roubicek J, Krebs E, Poldinger W, Burmeister P, Kerp L (1978) Effects of the synthetic analogue FK 33–824 in man. Nature 272:729–730

    Article  Google Scholar 

  • Wakabayashi I, Demura R, Miki N, Ohmura E, Miyoshi H, Shizume K (1980) Failure of naloxone to influence plasma growth hormone, prolactin, and Cortisol secretions induced by insulin hypoglycemia. J Clin Endocrinol Metab 50:597–599

    Article  PubMed  CAS  Google Scholar 

  • Wardlaw SL, Wehrenberg WB, Ferin M, Carmel PW, Frantz AG (1980a) High levels of P-endorphin in hypophyseal portal blood. Endocrinology 106:1323–1326

    Article  PubMed  CAS  Google Scholar 

  • Wardlaw SL, Wehrenberg WB, Ferin M, Frantz AG (1980b) Failure of β-endorphin to stimulate prolactin release in the pituitary stalk-sectioned monkey. Endocrinology 107:1663–1666

    Article  PubMed  CAS  Google Scholar 

  • Wehrenberg WB, McNicol D, Wardlaw SL, Frantz AG, Ferin M (1981) Dopaminergic and serotonergic involvement in opiate-induced prolactin release in monkeys. Endocrinology 109:544–547

    Article  PubMed  CAS  Google Scholar 

  • Wehrenberg WB, Bloch B, Ling N (1985) Pituitary secretion of growth hormone in response to opioid peptides and opiates is mediated through growth hormone releasing factor. Neuroendocrinology 41:13–16

    Article  PubMed  CAS  Google Scholar 

  • Wiesner JB, Koenig JI, Krulich L, Moss RL (1984) Site of action for β-endorphin- induced changes in plasma luteinizing hormone and prolactin in the ovariectomized rat. Life Sci 34:1463–1473

    Article  PubMed  CAS  Google Scholar 

  • Wilkes MM, Yen SSC (1980) Reduction by β-endorphin of efflux of dopamine and DOPAC from superfused medial basal hypothalamus. Life Sci 27:1387–1391

    Article  PubMed  CAS  Google Scholar 

  • Wilkes MM, Yen SSC (1981) Augmentation by naloxone of efflux of LRF from superfused medial basal hypothalamus. Life Sci 28:2355–2359

    Article  PubMed  CAS  Google Scholar 

  • Wuster N, Rubin R, Schulz R (1981) The preference of putative pro-enkephalins for different types of opiate receptors. Life Sci 29:1219–1227

    Article  PubMed  CAS  Google Scholar 

  • Zanoboni A, Zecca L, Zanussi C, Zanoboni-Muciaccia W (1981) Naloxone and anterior pituitary hormones: effect on TRH stimulation test. Neuroendocrinology 33:140–143

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cella, S.G., Locatelli, V., Müller, E.E. (1993). Opioid Peptides in the Regulation of Anterior Pituitary Hormones. In: Herz, A., Akil, H., Simon, E.J. (eds) Opioids II. Handbook of Experimental Pharmacology, vol 104 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77540-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77540-6_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77542-0

  • Online ISBN: 978-3-642-77540-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics