Skip to main content

Opioid Systems and Stress

  • Chapter
Opioids II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 104 / 2))

Abstract

An understanding of the mechanisms by which an organism responds to environmental disturbances began with claude bernard’s concept of an internal environment which must be maintained to preserve life. This idea was further expanded by cannon (1939), who coined the term homeostasis to describe physiological reactions which maintain the steady state of the organism in the face of external stimuli. He observed that emotional as well as physiological disturbances could elicit sympathetic nervous system and adrenal responses. We now call these disturbing forces or threats “stressors”. The concept of stress was first formulated by selye in 1936. Selye conceptualized stress in terms of a specific reaction pattern to a variety of stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie ED, Jacobs BL (1988) Systemic naloxone potentiates locus coeruleus noradrenergic neuronal activity under stressful but not non-stressful conditions. Brain Res 441:362–366

    PubMed  CAS  Google Scholar 

  • Abercrombie ED, Levine ES, Jacobs BL (1988) Microinjected morphine suppresses the activity of locus coeruleus noradrenergic neurons in freely moving cats. Neurosci Lett 86:334–339

    PubMed  CAS  Google Scholar 

  • Ader R, Felten O, Cohen N (1990) Interaction between the brain and the immune system. Annu Rev Pharmacol Toxicol 30:561–602

    PubMed  CAS  Google Scholar 

  • Akil H, Mayer OJ, Liebeskind JC (1976) Antagonism of stimulation produced analgesia by naloxone, a narcotic antagonist. Science 191:961–962

    PubMed  CAS  Google Scholar 

  • Akil H, Shiomi H, Matthews J (1985) Induction of the intermediate pituitary by stress. Synthesis and release of a non-opioid form of β-endorphin. Science 227:424–426

    PubMed  CAS  Google Scholar 

  • Akil H, Young E, Walker JM, Watson SJ (1986) The many possible roles of opioids and related peptides in stress-induced analgesia. Ann N Y Acad Sci 467:140–153

    PubMed  CAS  Google Scholar 

  • Almeida OFX, Nikolarakis KE, Sirinathsinghji DJS, Herz A (1989). Opioidmediated inhibition of sexual behaviour and luteinizing hormone secretion by corticotrophin-releasing hormone. In: Dyer RG, Bicknell RJ (eds) Brain opioid systems in reproduction. Oxford University Press, Oxford, pp 149–164

    Google Scholar 

  • Arimura A, Schally A V, Bowers CY (1969) Corticotropin-releasing activity of lysine vasopressin analogues. Endocrinology 84:579–583

    PubMed  CAS  Google Scholar 

  • Barna I, Sweep CG, Veldhuis HD, Wiegant VM, De Wied D (1990) Effects of pituitary β-endorphin secretagogues on the concentration of β-endorphin in rat cerebrospinal fluid: evidence for a role of vasopressin in the regulation of brain β-endorphin release. Neuroendocrinology 51:104–110

    PubMed  CAS  Google Scholar 

  • Beaulieu S, Gagne B, Barden N (1988) Glucocorticoid regulation of proopiomelanocortin messenger ribonucleic acid content of rat hypothalamus. Mol Endocrinol 2:727–731

    PubMed  CAS  Google Scholar 

  • Berkenbosch F, Tilders RJH, Vermes I (1983) β-Adrenoceptor activation mediates stress-induced secretion of β-endorphin-related peptides from the intermediate but not anterior pituitary. Nature 305:237–239

    PubMed  CAS  Google Scholar 

  • Blalock JE, Harbour-McMenamin D, Smith EM (1985) Peptide hormones shared by the neuroendocrine and immunologic systems. J Immunol 135:858s-861s

    PubMed  CAS  Google Scholar 

  • Bloom FE, Battenberg E, Rossier J, Ling N, Guillemin R (1978) Neurons containing β-endorphin in rat brain exist separately from those containing enkephalin: immunocytochemical studies. Proc NatI Acad Sci USA 75:1591–1595

    CAS  Google Scholar 

  • Bloom FE, Battenberg ELF, Rivier J, Vale W (1982) Corticotropin-releasing factor (CRF): immunoreactive neurons and fibers in rat hypothalamus. Regul Pept 4:43–48

    PubMed  CAS  Google Scholar 

  • Broekkamp CL, Phillips AG, Cools AR (1979) Facilitation of self stimulation behavior following intracerebral microinjection of opioid into the ventral tegmental area. Pharmacol Biochem Behav 11:289–295

    PubMed  CAS  Google Scholar 

  • Buckingham JC (1986) Stimulation and inhibition of corticotropin releasing factor secretion by β-endorphin. Neuroendocrinology 42:148–152

    PubMed  CAS  Google Scholar 

  • Burns G, Almeida OFX, Passarelli F, Herz A (1989) A two-step mechanism by which corticotropin-releasing hormone releases hypothalamic β-endorphin: the role of vasopressin and G-proteins. Endocrinology 125:1365–1372

    PubMed  CAS  Google Scholar 

  • Cannon WB (1939) The wisdom of the body. Norton, New York

    Google Scholar 

  • Cesselin F, Oliveras JL, Bourgoin S, Sieralta F, Michelot R, Besson JM, Hamon M (1982) Increased levels of met-enkephalin-like material in the CSF of anesthetized cat after tooth pulp stimulation. Brain Res 237:325–338

    PubMed  CAS  Google Scholar 

  • Chance WT, White AC, Krynock GM, Rosecrans JA (1978) Conditional fearinduced decrease in the binding of 3H-N-leu-enkephalin to rat brain. Brain Res 141:371–374

    PubMed  CAS  Google Scholar 

  • Chipkin RE, Latranyi MB, Iorio LC (1983) Potentiation of stress induced analgesia (SIA) by thiorphan and its blockade by naloxone. Life Sci 31:1184–1192

    Google Scholar 

  • Christie MJ, Chesher GB, Bird KD (1981) The correlation between swim-stress induced antinociception and (3H)-leu-enkephalin binding to brain homogenates in mice. Pharmacol Biochem Behav 15:853–857

    PubMed  CAS  Google Scholar 

  • Clarke G, Davison I, MacMillan SJ, Wright DN (1990) Differential activity of selective opioid agonists on hypothalamic magnocellular neuronal activity. Prog Clin Bioi Res 328:351–354

    CAS  Google Scholar 

  • Day R, Schäfer MK, Collard MW, Watson SJ, Akil H (1991) Atypical prodynorphin gene expression in corticosteroid-producing cells of the rat adrenal gland. Proc Natl Acad Sci USA 88: 1320–1324

    PubMed  CAS  Google Scholar 

  • Deutch A Y, Tam SY, Roth RH (1985) Footshock and conditioned stress increase DOP AC in the ventral tegmental area but not substantia nigra. Brain Res 333:143–146

    PubMed  CAS  Google Scholar 

  • Di Chiara G, Imperato A (1988) Opposite effects of μ- and κ-opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther 244:1067–1080

    PubMed  Google Scholar 

  • Diez-Guerra FJ, Augood S, Emson PC, Dyer RG (1986) Morphine inhibits electrically stimulated noradrenaline release from slices of rat medial preoptic area. Neuroendocrinology 43:89–91

    PubMed  CAS  Google Scholar 

  • Evans CJ, Hammond DL, Fredrickson RCA (1983) The opioid peptides. In: Pasternak GW (ed) The opiate receptors. Humana, Clifton, p 23

    Google Scholar 

  • Faden AJ, Molineauks CJ, Rosenberg JG, Jacobs TP, Cox BM (1985) Endogenous opioid immunoreactivity in rat spinal cord following traumatic injury. Ann Neurol 17:368–390

    Google Scholar 

  • Ferri S, Arrigo-Reina R, Candeletti S, Cost G, Murari G, Speroni E, Scoto G (1983) Central and peripheral sites of action for the protective effect of opioids of the rat stomach. Pharmacol Res Commun 15:409–418

    PubMed  CAS  Google Scholar 

  • Fisher LA (1989) Corticotropin-releasing factor: endocrine and autonomic integration of responses to stress. TIPS 10:189–193

    PubMed  CAS  Google Scholar 

  • Forman LJ, Estilow S (1988) Estrogen influences the effect of immobilization stress on immunoreactive β-endorphin levels in the female rat pituitary. Proc Soc Exp Bioi Med 187:190–196

    CAS  Google Scholar 

  • Forman LJ, Estilow S, Mead J, Vasilenko P (1988) Eight weeks of streptozotocininduced diabetes influences the effects of cold stress on immunoreactive betaendorphin levels in female rats. Horm Metab Res 10:555–558

    Google Scholar 

  • Fratta W, Collu M, Martellotta MC, Pichiri M, Muntoni F, Gessa GL (1987) Stressinduced insomnia: opioid dopamine interactions. Eur J Pharmacol 142:437–440

    PubMed  CAS  Google Scholar 

  • Gillies GE, Linton EA, Lowry PJ (1982) Corticotropin-releasing activity of new CRF is potentiated several times by vasopressin. Nature 299:355–357

    PubMed  CAS  Google Scholar 

  • Giuffre KA, Udelsman R, Listwak S, Chrousos GP (1988) Effects of immune neutralization of corticotropin-releasing hormone, adrenocorticotropin, and β-endorphin in the surgically stressed rat. Endocrinology 122:306–310

    PubMed  CAS  Google Scholar 

  • Glatt CE, Kenner JR, Long JB, Holaday JW (1987) Cardiovascular effects of dynorphin A1-13 in conscious rats and its modulation of morphine bradycardia over time. Peptides 8:1089–1092

    PubMed  CAS  Google Scholar 

  • Greenberg A, Dyck D, Sandler L (1984) Opponent processes, neurohormones and neural resistance. In: Fox B, Newberry B (eds) Impact of psychoendocrine in cancer and immunity. Hogrefe, Toronto p 225

    Google Scholar 

  • Gue M, Pascaud X, Honde C, Junien JL, Bueno L (1988) CNS blockade of acoustic stress-induced gastric motor inhibition by kappa-opiate agonists in dogs. Am J Physiol 254:802–807

    Google Scholar 

  • Guillemin R, Vargo T, Rossier J, Minick S, Ling N, Rivier C, Vale W, Bloom F (1977) β-Endorphin and adrenocorticotropin are secreted concomitantly by the pituitary gland. Science 197:1367–1369

    PubMed  CAS  Google Scholar 

  • Gysling K, Wang RY (1983) Morphine-induced activation of AlO dopamine neurons in the rat. Brain Res 277:119–127

    PubMed  CAS  Google Scholar 

  • Hanbauer I, Govoni F, Majane E, Yang HT, Costa E (1982) In vivo regulation of the release of met-en kephalin-like peptides from dog adrenal medulla. Adv Biochem Psychopharmacol 33:63–69

    Google Scholar 

  • Harbuz MS, Lightman SL (1989) Responses of hypothalamic and pituitary mRNA to physical and psychological stress in the rat. J Endocrinol 122:705–711

    PubMed  CAS  Google Scholar 

  • Haskins JT, Gudelsky GA, Moss RL, Porter JC (1981) Iontophoresis of morphine into the arcuate nucleus: effects on dopamine concentrations in hypophysial portal plasma and serum prolactin concentrations. Endocrinology 108:767–771

    PubMed  CAS  Google Scholar 

  • Hassen AK, Feuerstein GZ, Faden AI (1982) Cardiovascular responses to opioid agonists injected into the nucleus of the tractus solitarius of anaesthetized cats. Life Sci 31:2193–2196

    PubMed  CAS  Google Scholar 

  • Heijna MH, Hogenboom F, Schoffelmeer ANM, Mulder AH (1990) Opioid receptormediated inhibition of dopamine release from rat basal hypothalamus slices; involvement of both μ and κ receptors. Eur J Pharmacol 183:2334–2335

    Google Scholar 

  • Hernandez DE, Nemeroff CB, Orlando RC, Prange AJ (1983) The effect of centrally administered neuropeptides on the developdevelopment of stress-induced gastric ulcers in rats. J Neurosci Res 9:145–157

    PubMed  CAS  Google Scholar 

  • Hisano S, Daikoku S, Yanaihara N, Shibasaki T (1986) Intracellular localization of CRF and met-enk in nerve terminals in the rat median eminence. Brain Res 370:312–326

    Google Scholar 

  • Hnatowich MR, Labella FS, Kiernan K, Glavin GB (1986) Cold-restraint stress reduces (3H) etorphine binding to rat brain membranes: influence of acute and chronic morphine and naloxone. Brain Res 380:107–113

    PubMed  CAS  Google Scholar 

  • Hökfelt T, Fahrenkrug J, Ju G, Ceccatelli S, Tsuruo Y, Meister B, Mutt V, Rundgren M, Brodin E, Terenius L (1987) Analysis of peptide Histidineisoleucine vasoactive intestinal polypeptide-immunoreactive neurons in the central nervous system with special reference to their relation to corticotrophin releasing-factor and enkephalin-like immunoreactivities in the paraventricular nucleus. Neuroscience 23:827–857

    PubMed  Google Scholar 

  • Holaday JW (1983) Cardiovascular effects of endogenous opiate systems. Annu Rev Pharmacol Toxicol 23:541–594

    PubMed  CAS  Google Scholar 

  • Holaday JW, Hitzeman RJ, Curell I, Tortella FC, Belenky GI (1982) Repeated electroconvulsive shock or chronic morphine treatment increases the number of 3H-D-Ala2-D-Leu5-enkephalin binding sites in the rat brain membranes. Life Sci 31:2359–2362

    PubMed  CAS  Google Scholar 

  • Höllt V, Haarmann I, Seizinger BR, Herz A (1981) Levels of dynorphin (1–13) immunoreactivity in rat neurointermediate pituitaries are concomitantly altered with those of leucine-enkephalin and vasopressin in response to various endocrine manipulations. Neuroendocrinology 33:333–359

    PubMed  Google Scholar 

  • Höllt V, Przewłocki R, Haarmann I, Almeida OFX, Kley N, Millan MJ, Herz A (1986) Stress-induced alterations in the levels of messenger RNA coding for proopiomelanocortin and prolactin in rat pituitary. Neuroendocrinology 43:277–282

    PubMed  Google Scholar 

  • Holtzman SG (1974) Behavioural effects of separate and combined administration of naloxone and d-amphetamine. J Pharmacol Exp Ther 189:51–60

    PubMed  CAS  Google Scholar 

  • Hong JS, Yoshikawa K, Kanamatsu T, McGinty JF, Sabol SL (1985) Effects of repeated electroconvulsive shock on the biosynthesis of enkephalin and concentration of dynorphin in the rat brain. Neuropeptides 5:557–560

    PubMed  CAS  Google Scholar 

  • Ida Y, Tanaka M, Tsuda A, Tsujimaru S, Nagasaki N (1985) Attenuating effect of diazepam on stress-induced increases in noradrenaline turnover in specific brain regions of rats: antagonism by Ro 15–1788. Life Sci 37:2491–2498

    PubMed  CAS  Google Scholar 

  • Illes P (1989) Modulation of transmitter and hormone release by multiple neuronal opioid receptors. Rev Physiol Biochem Pharmacol 112:140–233

    Google Scholar 

  • Insel TR, Kinsley CH, Mann PE, Bridges RS (1990) Prenatal stress has long term effects on brain opiate receptors. Brain Res 511:93–97

    PubMed  CAS  Google Scholar 

  • Jackisch R, Geppert M, Lupp A, Huang HY, Illes P (1988) Types of opioid receptors modulating neurotransmitter release in discrete brain regions. In: Illes P, Farsang C (eds) Regulatory roles of opioid peptides. VCH, Weinheim, pp 240–258

    Google Scholar 

  • Jackson HC, Ripley TL, Nutt DJ (1989) Exploring delta-receptor function using the selective opioid antagonist naltrindole. Neuropharmacology 28:1427–1430

    PubMed  CAS  Google Scholar 

  • Jenck F, Gratton A, Wise RA (1987) Opioid receptor subtypes associated with ventral tegmental facilitation of lateral hypothalamic brain stimulation reward. Brain Res 423:34–38

    PubMed  CAS  Google Scholar 

  • Jingami H, Nakanishi S, Imura H, Numa S (1984) Tissue distribution of messenger RNA coding for opioid peptide precursors and related RNA. Eur J Biochem 142:441–447

    PubMed  CAS  Google Scholar 

  • Kalin NH, Shelton SE, Barksdale CM (1988) Opiate modulation of separationinduced distress in non-human primates. Brain Res 440:285–292

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Abhold R (1987) Enkephalin release into the ventral area in response to stress: modulation of mesocorticolimbic dopamine. Brain Res 414:339–348

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P, Dilts R, Abhold R (1988) Enkephalin modulation of A10 dopamine neurons: a role in dopamine sensitization. Ann N Y Acad Sci 537:405–414

    PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P, Eberhardt H (1990) Modulation of A10 dopamine neurons by gamma-aminobutyric acid antagonists. J Pharmacol Exp Ther 253:858–866

    PubMed  CAS  Google Scholar 

  • Katoh A, Toshitaka N, Kameyama T (1990) Behavioral changes induced by stressful situations: effects of enkephalins, dynorphins, and their interactions. J Pharmacol Exp Ther 253:600–607

    PubMed  CAS  Google Scholar 

  • Kelley AE, Stinus L, Iversen SD (1980) Interactions between D-Ala-Met-enkephalin, A10 dopaminergic neurons, and spontaneous behavior in the rat. Behav Brain Res 1:3–24

    PubMed  CAS  Google Scholar 

  • Kelsey SJ, Watson SJ, Akil H (1984) Changes in pituitary POMC mRNA levels. Soc Neurosci Abstr 10:359

    Google Scholar 

  • Khachaturian H, Lewis ME, Schäfer MKH, Watson SJ (1985) Anatomy of the CNS opioid systems. Trends Neurosci 8:111–119

    CAS  Google Scholar 

  • Knepel W, Reimann W (1982) Inhibition by morphine and β-endorphin of vasopressin release evoked by electrical stimulation of the rat medial basal hypothalamus in vitro. Brain Res 238:484–488

    PubMed  CAS  Google Scholar 

  • Knepel W, Przewlocki R, Herz A (1985) Foot shock stress-induced release of vasopressin in adenohypophysectomized and hypophysectomized rats. Endocrinology 117:292–299

    PubMed  CAS  Google Scholar 

  • Koenig JI, Meltzer HY, Devane GD, Gudelsky GA (1986) The concentration of arginine vasopressin in pituitary stalk plasma of the rat after adrenalectomy or morphine. Endocrinology 118:2534–2539

    PubMed  CAS  Google Scholar 

  • Kopin IJ, Eisenhofer G, Goldstein D (1988) Sympathomedullary system and stress. In: Chrousos GP, Loriaux DL, Gold W (eds) Mechanisms of physical and emotional stress. Plenum, New York, pp 11–23

    Google Scholar 

  • Krahn DD, Gosnell BA, Grace M, Levine AS (1986) CRF antagonists partially reverses CRF and stress-induced effect on feeding. Brain Res Bull 17:285–290

    PubMed  CAS  Google Scholar 

  • Kurumaji A, Takashima M, Shibuya H (1987) Cold and immobilization stressinduced changes in pain responsiveness and brain met-enkephalin-like immunoreactivity in the rat. Peptides 8:355–359

    PubMed  CAS  Google Scholar 

  • Lasoń W, Przewłocka B, Stala L, Przewlocki R (1983) Changes in hippocampal immunoreactive dynorphin and a-neoendorphin content following intraamygdalar kainic acid induced seizures. Neuropeptides 3:399–404

    PubMed  Google Scholar 

  • Lasoń W, Przewłocka B, Przewłocki R (1987) Single and repeated electroconvulsive shock differentially affects the prodynorphin and proopiomelanocortin system in the rat. Brain Res 403:301–307

    PubMed  Google Scholar 

  • Latimer LG, Duffy P, Kalivas PW (1987) Mu opioid receptor involvement in enkephalin activation of dopamine neurons in the ventral tegmental area. J Pharmacol Exp Ther 241:328–337

    PubMed  CAS  Google Scholar 

  • Laurent S, Schmitt H (1983) Central cardiovascular effects of kappa agonists dynorphin-(1–13) and ethylketocyclazocine in the anaesthetized rat. Eur J Pharmacol 96:165–169

    PubMed  CAS  Google Scholar 

  • Leander JD (1982) A kappa opioid effects increased urination in the rat. J Pharmacol Exp Ther 224:89–94

    Google Scholar 

  • Ledda F, Mantelli L, Corti V (1985) Sensitivity to dynorphin1-13 of the presynaptic inhibitory opiate receptors of the guinea-pig heart. Eur J Pharmacol 117:377–380

    PubMed  CAS  Google Scholar 

  • Lee NM, Smith AP (1984) Possible regulatory function of dynorphin and its clinical implications. TIPS 5:108–110

    CAS  Google Scholar 

  • Lester LS, Fanselow MS (1986) Naloxone’s enhancement of freezing: modulation of perceived intensity or memory processes? Physiol Psychol 14:5–10

    Google Scholar 

  • Lewis JW, Tordoff MG, Sherman JE, Liebeskind JC (1982) Adrenal medullary en kephalin-like peptides may mediate opioid stress analgesia. Science 217:557–559

    PubMed  CAS  Google Scholar 

  • Lewis JW, Mansour A, Khachaturian H, Watson SJ, Akil H (1987) Opioids and pain regulation. In: Akil H, Lewis JW (eds) Neurotransmitters and pain control. Karger, Basel, pp 129–159

    Google Scholar 

  • Lightman SL, Young WS (1989) Influence of steroids on the hypothalamic corticotropin-releasing factor and preproenkephalin mRNA responses to stress. Proc Natl Acad Sci USA 86:4306–4310

    PubMed  CAS  Google Scholar 

  • Linton EA, Tilders FJH, Hodgkinson S, Berkenbosch F, Vermes I, Lowry PJ (1985) Stress-induced secretion of adrenocorticotropin in rats is inhibited by antisera to ovine corticotropin-releasing factor and vasopressin. Endocrinology 116:966–970

    PubMed  CAS  Google Scholar 

  • MacLennan AJ, Drugan RC, Hyson RL, Maier RF, Madden J, Barchas JD (1982) Corticosterone. A critical factor in an opioid form of stress-induced analgesia. Science 215:1530–1532

    PubMed  CAS  Google Scholar 

  • Majeed NH, Lasoń W, Przewłocka B, Przewłocki R (1984) Differential modulation of the beta-endorphin and dynorphin systems by serotonergic stimulation in the rat. Neuropeptides 5:563–566

    Google Scholar 

  • Majeed NH, Lasoń W, Przewlocka B, Przewłocki R (1986) Brain and peripheral opioids after changes in ingestive behaviour. Neuroendocrinology 42:267–272

    PubMed  CAS  Google Scholar 

  • Mason JW (1971) A re-evaluation of the concept of non specificity in stress theory. J Psychiatr Res 8:323–333

    PubMed  CAS  Google Scholar 

  • Matthews RT, German DC (1984) Electrophysiological evidence for excitation of rat ventral tegmental area dopamine neurons by morphine. Neuroscience 11:617–625

    PubMed  CAS  Google Scholar 

  • McFadzean I, Lacey MG, Hill RG, Henderson G (1987) Kappa opioid receptor activation depresses excitatory synaptic input to rat locus coeruleus neurons in vitro. Neuroscience 20:231–239

    PubMed  CAS  Google Scholar 

  • McGivern RF, Mousa S, Couri D, Berntson GG (1983) Prolonged intermittent footshock stress decreases met- and leu-enkephalin levels in brain with concomitant decreases in pain threshold. Life Sci 33:47–54

    PubMed  CAS  Google Scholar 

  • Mezey E, Kiss JZ, Skirboll LR, Goldstein M, Axelrod J (1984) Increase of corticotropin-releasing factor staining in rat paraventricular nucleus neurones by depletion of hypothalamic adrenaline. Nature 310:140–141

    PubMed  CAS  Google Scholar 

  • Millan MJ, Przewłocki R, Jerlicz MH, Gramsch C, Höllt V, Herz A (1981a) Stress induced release of brain pituitary p-endorphin: major role of endorphin in generation of hyperthermia, not analgesia. Brain Res 208:325–328

    PubMed  CAS  Google Scholar 

  • Millan MJ, Tsang YF, Przewłocki R, Höllt V, Herz A (1981b) The influence of footshock stress upon brain pituitary and spinal cord pools of immunoreactive dynorphin in rats. Neurosci Lett 24:75–79

    PubMed  CAS  Google Scholar 

  • Morley JE, Elson MK, Levine AS, Shafer RB (1982) The effects of stress on central nervous system concentrations of the opioid peptide, dynorphin. Peptides 3:901–906

    PubMed  CAS  Google Scholar 

  • Munck A, Guyre PM, Holbrook NJ (1984) Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev 5:25–44

    PubMed  CAS  Google Scholar 

  • Nakamura M, Kamata K, Inoue H, Inaba M (1989) Effects of opioid peptides administered in conscious rats on the changes in blood adrenaline levels caused by immobilization stress. Jpn J Pharmacol 50:354–356

    PubMed  CAS  Google Scholar 

  • Nakata Y, Chang KJ, Mitchell CL, Hong JS (1985) Repeated electroconvulsive shock down regulates the opioid receptors in rat brain. Brain Res 346:160–163

    PubMed  CAS  Google Scholar 

  • Nikolarakis KE, Almeida OFX, Herz A (1986) Stimulation of hypothalamic β-endorphin and dynorphin release by corticotropin releasing factor (in vitro). Brain Res 399: 152–155

    PubMed  CAS  Google Scholar 

  • Nikolarakis KE, Almeida OFX, Sirinathsinghji DJS, Herz A (1988) Concomitant changes in the in vitro and in vivo release of opioid peptides and luteinizing hormone releasing hormone from the hypothalamus following blockade of receptors for corticotropin releasing factor. Neuroendocrinology 47:545–550

    PubMed  CAS  Google Scholar 

  • Nordin M, Morat P, Zainora M (1987) The effect of endogenous opioids on blood pressure during stress. Clin Exp Pharmacol Physiol 14:303–308

    PubMed  CAS  Google Scholar 

  • North RA (1986) Opioid receptor types and membrane ion channels. Trends Neurosci 9:144–117

    Google Scholar 

  • Odio M, Brodish A (1990) Central but not peripheral opiate receptor blockade prolonged pituitary-adrenal responses to stress. Pharmacol Biochem Behav 35:963–969

    PubMed  CAS  Google Scholar 

  • Olson GA, Olson RD, Kastin AJ (1987) Endogenous opiates. Peptides 10:205–236

    Google Scholar 

  • Olson GA, Olson RD, Kastin AJ (1988) Endogenous opiates. Peptides 10:1253–1280

    Google Scholar 

  • Olson GA, Olson RD, Kastin AJ (1989) Endogenous opiates. Peptides 11:1277–1304

    Google Scholar 

  • Osborne H, Przewłocki R, Höllt V, Herz A (1979) Release of β-endorphin from rat hypothalamus in vitro. Eur J Pharmacol 55:425–428

    PubMed  CAS  Google Scholar 

  • Osgood PF, Murphy JL, Carr DB, Szyfelbein SK (1986) Increases in plasma β endorphin and tail-flick latency in the rat following burn injury. Life Sci 40:547–554

    Google Scholar 

  • Owens PC, Smith R (1987) Opioid peptides in blood and cerebrospinal fluid during acute stress. Baillieres Clin Endocrinol Metabol 1:415–437

    CAS  Google Scholar 

  • Petralgia F, Vale W, Rivier C (1986) Opioids act centrally to modulate stressinduced decrease in luteinizing hormone in the rat. Endocrinology 119:2445–2450

    Google Scholar 

  • Pittman QJ, Hatton JD, Bloom FE (1980) Morphine and opioid peptides reduce paraventricular neuronal activity: studies on the rat hypothalamic slice preparation. Proc Natl Acad Sci USA 77:5527–5531

    PubMed  CAS  Google Scholar 

  • Plotnikoff NP, Miller GC (1983) Enkephalins as immunomodulators. Int J Immunopharmacol 5:437–441

    PubMed  CAS  Google Scholar 

  • Plotsky PM (1986) Opioid inhibition of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation of rats. Regul Pept 16:235–242

    PubMed  CAS  Google Scholar 

  • Przewłocka B, Stala L, Lasoń W, Przewłocki R (1983) The effect of various opiate receptor agonists on the seizures threshold in the rat. Is dynorphin an endogenous anticonvulsant? Life Sci 33 (suppl):595–598

    PubMed  Google Scholar 

  • Przewłocka B, Vetulani J, Lasoń W, Dziedzicka M, Silberring J, Castellano C, Przewłocki R (1988) The difference in stress-induced analgesia in C57BLl6 and DBAl2 mice: a search for biochemical correlates. Pol J Pharmacol Pharm 40:497–506

    PubMed  Google Scholar 

  • Przewłocka B, Sumova A, Lasoń W (1990) The influence of anticipation stress on opioid systems in rat. Pharmacol Biochem Behav 37:661–666

    PubMed  Google Scholar 

  • Przewłocki R, Höllt V, Voight KH, Herz A (1979) Modulation of in vitro release of β-endorphin from the separate lobes of the rat pituitary. Life Sci 24:1601–1608

    PubMed  Google Scholar 

  • Przewłocki R, Millan J, Gramsch C, Millan MH, Herz A (1982) The influence of selective adeno-neurointermedio-hypophysectomy upon plasma and brain levels of endorphin and their response to stress in rats. Brain Res 242:107–117

    PubMed  Google Scholar 

  • Przewłocki R, Lasoń W, Konecka A, Gramsch C, Herz A, Reid L (1983a) The opioid peptide dynorphin, circadian rhythms, and starvation. Science 219:71–73

    PubMed  Google Scholar 

  • Przewłocki R, Shearman GT, Herz A (1983b) Mixed opioid/nonopioid effects of dynorphin and dynorphin-related peptides after their intrathecal injection in rats. Neuropeptides 3:233–239

    PubMed  Google Scholar 

  • Przewłocki R, Lasoń W, Höllt V, Silberring J, Herz A (1987) The influence of chronic stress on multiple opioid peptide systems in the rat: pronounced effects upon dynorphin in spinal cord. Brain Res 413:213–219

    PubMed  Google Scholar 

  • Przewłocki R, Majeed NH, Wedzony K, Przewłocka B (1988a) The effect of stress on the opioid peptide systems in the rat nucleus accumbens. In: Kvetnansky R, Van Loon GR, McCarty R, Axelrod J (eds) Stress: neurochemical and humoral mechanisms. Gordon and Breach, New York

    Google Scholar 

  • Przewłocki R, Haarmann I, Nikolarakis K, Herz A, Höllt V (1988b) Prodynorphin gene expression in spinal cord is enhanced after traumatic injury in the rat. Mol Brain Res 4:37–41

    Google Scholar 

  • Raab A, Seizinger BR, Herz A (1985) Continuous social defeat induces an increase of endogenous opioids in discrete brain areas of the mongolian gerbil. Peptides 6:387–391

    PubMed  CAS  Google Scholar 

  • Ray A, Henke PG, Sullivan RM (1988) Opiate mechanisms in the central amygdale and gastric stress pathology in rats. Brain Res 442:195–198

    PubMed  CAS  Google Scholar 

  • Rivier C, Rivier J, Mormede P, Vale W (1984) Studies on the nature of the interaction between vasopressin and corticotropin-releasing factor on adrenocortin release in the rat. Endocrinology 115:882–886

    PubMed  CAS  Google Scholar 

  • Rossier J, French ED, Rivier C, Ling N, Bloom FK (1977) Foot-shock induced stress increases β-endorphin levels in blood but not brain. Nature 270:618–620

    PubMed  CAS  Google Scholar 

  • Rossier J, Guillemin R, Bloom FE (1978) Foot-shock induced stress decreases Leu5- enkephalin immunoreactivity in rat hypothalamus. Eur J Pharmacol 48:465–466

    PubMed  CAS  Google Scholar 

  • Roth KA, Weber E, Barchas JD, Chang JK (1983) Immunoreactive dynorphin1-8 and corticotropin releasing factor in subpopulation of hypothalamic neurones. Science 219:189–191

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Swanson LW, Vale W (1984) Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat. Proc Natl Acad Sci USA 81:1883–1887

    PubMed  CAS  Google Scholar 

  • Scatton B, D’Angio M, Driscoll P, Serrano A (1988) An in vitro voltametric study of the response of mesocortical and mesoaccumbens dopaminergic neurons to environmental stimuli in strains of rats with differing levels of emotionality. Ann NY Acad Sci 537:124–137

    PubMed  CAS  Google Scholar 

  • Schoffelmeer ANM, Hogenboom F, Mulder AH (1988) Sodium dependent 3H-noradrenaline release from rat neocortical slices in the absence of extracellular calcium: presynaptic modulation by μ-opioid receptor and adenylate cyclase activation. Naunyn Schmiedebergs Arch Pharmacol 338:548–552

    PubMed  CAS  Google Scholar 

  • Seeger TF, Sforzo GA, Pert CB, Pert A (1984) In vivo autoradiography: visualization of stress induced changes in opiate receptor occupancy in the rat brain. Brain Res 305:303–311

    PubMed  CAS  Google Scholar 

  • Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138:32

    Google Scholar 

  • ShaVit Y, Lewis JW, Terman G, Gale RP, Liebeskind C (1986) Stress, opioid peptides and immune function. In: Frederickson RCA, Hendrie IN, Hingtgen HC (eds) Neuroregulation of autonomic endocrine and immune systems. Nijhoff, Boston, p 343

    Google Scholar 

  • Sherman TG, Civelli O, Douglas J, Herbert E, Watson SJ (1986) Coordinate expression of hypothalamic pro-dynorphin and pro-vasopressin mRNA with osmotic stimulation. Neuroendocrinology 44:222–228

    PubMed  CAS  Google Scholar 

  • Shiomi H, Akil H (1982) Pulse-chase studies of the POMC/β-endorphin system in the pituitary of acutely and chronically stressed rats. Life Sci 31:2271–2273

    PubMed  Google Scholar 

  • Sitsen JMA, Van Ree JM, De Jong W (1982) Cardiovascular and respiratory effects of β-endorphin in anaesthetized and conscious rats. J Cardiovasc Pharmacol 4:883–888

    PubMed  CAS  Google Scholar 

  • Spanagel R, Herz A, Schippenberg TS (1990) The effects of opioid peptides on dopamine release in the nucleus accumbens: an in vivo microdialysis study. J Neurochem 55:1734–1740

    PubMed  CAS  Google Scholar 

  • Starke K, Schoffel E, Illes P (1985) The sympathetic axons innervating the sinus node of the rabbit possess presynaptic opioid κ-, but not μ- or δ-receptors. Naunyn Schmiedebergs Arch Pharmacol 329:206–209

    PubMed  CAS  Google Scholar 

  • Stein C, Hassan AHS, Przewłocki R, Gramsch C, Peter K, Herz A (1990) Opioids from immunocytes interact with receptors on sensory nerves to inhibit nociception in inflammation. Proc Natl Acad Sci USA 87:5935–5939

    PubMed  CAS  Google Scholar 

  • Stein EA, Hiller JE, Simon EJ (1988) Alteration in opiate receptor binding following stressful stimuli in the rat. In: Cros J, Meunier J-CL, Hamon M (eds) Progress in opioid research. Advances in the biosciences. Pergamon Press, Oxford, NewYork, vol 75, pp 639–642

    Google Scholar 

  • Stuckey J, Marra S, Minor T, Insel TR (1989) Changes in mu opiate receptors following inescapable shock. Brain Res 476:167–169

    PubMed  CAS  Google Scholar 

  • Summy-Long JY, Rosella-Dampman LM, McLemore GL, Koehler E (1990) Kappa opiate receptors inhibit release of oxytocin from the magnocellular system during dehydration. Neuroendocrinology 51:376–384

    PubMed  CAS  Google Scholar 

  • Sumova A, Jakoubek B (1989) Analgesia and impact induced by anticipation stress:involvement of the endogenous opioid peptide system. Brain Res 503:273–280

    PubMed  CAS  Google Scholar 

  • Sun K, Lin BC, Zhang C, Wang CH, Zhu HN (1989) Possible involvement of β-endorphin in the deteriorating effect of arginine vasopressin on burn shock in rats. Circ Shock 29:167–174

    PubMed  CAS  Google Scholar 

  • Swanson LW, Sawchenko PE, Berod A, Hartman BK, Helle KB, Van Orden DE (1981) An immunohistochemical study of the organization of catecholaminergic cells and terminal fields in the para ventricular and supraoptic nuclei of the hypothalamus. J Comp Neurol 196:271–285

    PubMed  CAS  Google Scholar 

  • Swanson LW, Sawchenko PE, Rivier J, Vale WW (1983) Organization of ovine corticotropin-releasing factor immunoreactive cells and fibres in the rat brain: an immunohistochemical study. Neuroendocrinology 36: 165–186

    PubMed  CAS  Google Scholar 

  • Sweep CG, Boomkamp MD, Barna I, Logtenberg AW, Wiegant VM (1990) Vasopressin enhances the clearance of β-endorphin immunoreactivity from rat cerebrospinal fluid. Acta Endocrinol (Copen h) 122:191–200

    CAS  Google Scholar 

  • Tache Y, Garrick T, Raybould H (1990) Central nervous system action of peptides to influence gastrointestinal motor function. Gastroenterology 98:517–528

    PubMed  CAS  Google Scholar 

  • Tanaka M, Kohno Y, Tsuda A, Nakagawa R, Ida Y, limori Y, Hoaki Y, Nagasaki N (1983) Differential effect of morphine on noradrenaline release in brain regions of stressed and non-stressed rats. Brain Res 275:105–115

    PubMed  CAS  Google Scholar 

  • Takahashi M, Senda T, Tokuyama S, Kaneto H (1990) Further evidence for the implication of kappa opioid receptor mechanism in the production of the stress induced analgesia. Jpn J Pharmacol 53:487–494

    PubMed  CAS  Google Scholar 

  • Takayama H, Ota Z, Ogawa N (1986) Effect of immobilization stress on neuropeptides and their receptors in rat central nervous system. Regul Pept 15:239–248

    PubMed  CAS  Google Scholar 

  • Teskey GC, Kavaliers M (1988) Effects of opiate agonists and antagonists on aggressive encounters and subsequent opioid-induced analgesia, activity and feeding responses in male mice. Pharmacol Biochem Behav 31:43–52

    PubMed  CAS  Google Scholar 

  • Thompson ML, Miczek KA, Noda K, Shuster L, Kumar MS (1988) Analgesia in defeated mice: evidence for mediation via central rather than pituitary or adrenal endogenous opioid peptides. Pharmacol Biochem Behav 29:451–456

    PubMed  CAS  Google Scholar 

  • Tiligada E, Wilson JF (1990) Ionic, neuronal and endocrine influences on the proopiomelanocortin system of the hypothalamus. Life Sci 46:81–90

    PubMed  CAS  Google Scholar 

  • Till M, Gati T, Rabai K, Szombath D, Szekely JI (1988) Effect of [D-Met2, Pro5]enkephalinamide on gastric ulceration and transmucosal potential difference. Eur J Pharmacol 150:325–330

    PubMed  CAS  Google Scholar 

  • Tonoue T, Iwasawa H, Naito H (1987) Diazepam and endorphin independently inhibit ultrasonic distress calls in rats. Eur J Pharmacol 142: 133–136

    PubMed  CAS  Google Scholar 

  • Tortella FC (1988) Endogenous opioid peptides and epilepsy: quieting the seizing brain? TIPS 9:366–372

    PubMed  CAS  Google Scholar 

  • Tsagarakis S, Rees LH, Besser N, Grossman A (1990) Opiate receptor subtype regulation of CRF-41 release from hypothalamus in vitro. Neuroendocrinology 51:599–605

    PubMed  CAS  Google Scholar 

  • Tsuji S, Nakai Y, Fukata J, Nakaishi S, Takahashi H, Usui T, Imura H (1987) Effects of food deprivation and high fat diet on immunoreactive dynorphin A(1–8) levels in brain regions of Zucker rats. Peptides 8:1075–1078

    Google Scholar 

  • Vale W, Rivier C, Yang L, Minick S, Guillemin R (1978) Effects of purified hypothalamic corticotropin-releasing factor and other substances on the secretion of adrenocorticotropin and β-endorphin immunoreactivities in vitro. Endocrinology 103:1911–1915

    Google Scholar 

  • Van Loon GR, Pierzchala K, Houdi AA, Kvetnansky R, Zeman P (1990) Tolerance and cross-tolerance to stress-induced increases in plasma meten kephalin in rats with adaptively increased resting secretion. Endocrinology 126:2196–2204

    PubMed  Google Scholar 

  • Vasvani KK, Richard CW, Tejwani GA (1988) Cold swim stress-induced changes in the levels of opioid peptides in the rat CNS and peripheral tissue. Pharmacol Biochem Behav 29: 163–168

    Google Scholar 

  • Viveros DH, Diliberto EJ Jr, Hazum E, Chang KJ (1979) Opiate-like materials in the adrenal medulla: evidence for storage and secretion with catecholamines. Mol Pharmacol 16:1101–1108

    PubMed  CAS  Google Scholar 

  • Watson SJ, Khachaturian H, Akil H, Koy DH, Goldstein A (1982) Comparison of the distribution of dynorphin systems and enkephalin in brain. Science 218:1134–1136

    PubMed  CAS  Google Scholar 

  • Whit nail MH, Gainer H, Cox BM, Molineaux CJ (1983) Dynorphin A(1–8) is contained within vasopressin neurosecretory vesicles in rat pituitary. Science 222:1137–1139

    Google Scholar 

  • Williams CL, Burks T (1989) Stress, opioids and gastrointestinal transit. In: Tache Y, Morley JE, Brown MR (eds) Neuropeptides and stress. Springer, Berlin Heidelberg New York, p 175

    Google Scholar 

  • Williams CL, Villar RG, Peterson JM, Burks TF (1988) Stress-induced changes in intestinal transit in the rat: a model for irritable bowel syndrome. Gastroenterology 94:611–621

    PubMed  CAS  Google Scholar 

  • Wybran E (1985) Enkephalins and endorphins as modifiers of the immune system: present and future. Fed Proc 44:92–96

    PubMed  CAS  Google Scholar 

  • Xie GX, Han JS, Höllt V (1983) Electroacupuncture analgesia blocked by microinjection of anti-beta-endorphin antiserum into periaqueductal grey in rabbit. Int J Neurosci 18:287–292

    PubMed  CAS  Google Scholar 

  • Young EA (1990) Induction of the intermediate lobe pro-opiomelanocortin system with chronic swim stress and p-adrenergic modulation of this induction. Neuroedocrinology 52:405–414

    CAS  Google Scholar 

  • Young EA, Akil H (1985) Corticotropin-releasing factor stimulation of adrenocorticotropin and β-endorphin release: effect of acute and chronic stress. Endocrinology 117:23–30

    PubMed  CAS  Google Scholar 

  • Zeman P, Alexandrova M, Kvetnansky R (1988) Opioid μ and δ and dopamine receptor number changes in rat striatum during stress. Endocrinol Exp 22:59–66

    PubMed  CAS  Google Scholar 

  • Zhao BG, Chapman C, Bicknell RJ (1988) Functional kappa-opioid receptors on oxytocin and vasopressin nerve terminals isolated from the rat neurohypophysis. Brain Res 462:62–66

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Przewłocki, R. (1993). Opioid Systems and Stress. In: Herz, A., Akil, H., Simon, E.J. (eds) Opioids II. Handbook of Experimental Pharmacology, vol 104 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77540-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77540-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77542-0

  • Online ISBN: 978-3-642-77540-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics