Skip to main content

Opioid Mechanisms in the Control of Food Consumption and Taste Preferences

  • Chapter
Opioids II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 104 / 2))

Abstract

HOLTZMAN (1974, 1975) was the first to report that the pure opioid receptor antagonist, naloxone, significantly reduced food consumption in rats. At first these unexpected results were difficult to interpret. However, following the discovery of endogenous opioid peptides, these data could be explained in terms of the antagonism of endogenous opioid activity (SANGER 1981; MORLEY and LEVINE 1982; COOPER and SANGER 1984). The suppressant effects of naloxone and other opioid receptor antagonists on feeding behaviour were described initially using food-deprived rats and mice (e.g. HOLTZMAN 1974; ROGERS et al. 1978; MARGULES et al. 1978; BRANDS et al. 1979; BROWN and HOLTZMAN 1979). Naloxone also reduced free-feeding and drinking in rats (COOPER 1980), as well as eating induced by tail pinch (Lowy et al. 1980; MORLEY and LEVINE 1980), by 2-deoxY-D-glucose (SEWELL and JAWAHARLAL 1980), and by electrical stimulation of the brain (CARR and SIMON 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akil H, Bronstein D, Mansour A (1988) Overview of the endogenous opioid systems: anatomical, biochemical and functional issues. In: Rodgers RJ, Cooper SJ (eds) Endorphins, opiates and behavioural processes. Wiley, Chichester, pp 1–23

    Google Scholar 

  • Apfelbaum M, Mandenoff A (1981) Naltrexone suppresses hyperphagia induced in the rat by a highly palatable diet. Pharmacol Biochem Behav 15:89–91

    PubMed  CAS  Google Scholar 

  • Arjune D, Bodnor RJ (1990) Suppression of nocturnal, palatable and gluroprivic intake in rats by the κ opioid antagonist, nor-binaltorphimine. Brain Res 534:313–316

    PubMed  CAS  Google Scholar 

  • Arjune D, Standifer KM, Pasternak, GW, Bodnar RJ (1990) Reduction by central β-funaltrexamine of food intake in rats under freely-feeding, deprivation and glucoprivic conditions. Brain Res 535: 101–109

    PubMed  CAS  Google Scholar 

  • Bertino M, Abelson ML, Marglin SH, Neuman R, Burkhardt CA, Reid LD (1988) A small dose of morphine increases intake of and preference for isotonic saline among rats. Pharmacol Biochem Behav 29:617–623

    PubMed  CAS  Google Scholar 

  • Blass EM (1986) Functional interaction between the positive affect of sweet and the negative affect of pain and distress. Appetite 7:243

    Google Scholar 

  • Blass EM, Fitzgerald E, Kehoe P (1987) Interactions between sucrose, pain and isolation distress. Pharmacol Biochem Behav 26:483–489

    PubMed  CAS  Google Scholar 

  • Bozarth MA (1988) Opioid reinforcement processes. In: Rodgers RJ, Cooper SJ (eds) Endorphins, opiates and behavioural processes. Wiley, Chichester, pp 53–75

    Google Scholar 

  • Bozarth MA (1991) The mesolimbic dopamine system as a model reward system. In: Willner P, Scheel-Kruger J (eds) The mesolimbic dopamine system: from motivation to action. Wiley, Chichester, pp 301–330

    Google Scholar 

  • Brands B, Thornhill JA, Hirst M, Gowdey CW (1979) Suppression of food intake and body weight gain by naloxone in rats. Life Sci 24:1773–1778

    PubMed  CAS  Google Scholar 

  • Brobeck JR, Tepperman J, Long CNH (1943) Experimental hypothalamic hyperphagia in the albino rat. Yale J Biol Med 15:831–853

    PubMed  CAS  Google Scholar 

  • Brown DR, Holtzman SG (1979) Suppression of deprivation-induced food and water intake in rats and mice by naloxone. Pharmacol Biochem Behav 11:567–573

    PubMed  CAS  Google Scholar 

  • Cabanac M (1971) Physiological role of pleasure. Science 173:1103–1107

    PubMed  CAS  Google Scholar 

  • Cador M, Kelley AE, Le Moal M, Stinus L (1986) Ventral tegmental area infusion of substance P, neurotensin and enkephalin: differential effects on feeding behavior. Neuroscience 18:659–669

    PubMed  CAS  Google Scholar 

  • Calcagnetti DJ, Reid LD (1983) Morphine and acceptability of putative reinforcers. Pharmacol Biochem Behav 18:567–569

    PubMed  CAS  Google Scholar 

  • Calcagnetti DJ, Calcagnetti RL, Fanselow MS (1990) Centrally administered opioid antagonists, nor-binaltorphimine, 16-methyl cyprenorphine and MR2266, suppress intake of a sweet solution. Pharmacol Biochem Behav 35:69–73

    PubMed  CAS  Google Scholar 

  • Carr KD, Bak TH (1990) Rostral and caudal ventricular infusion of antibodies to dynorphin A(1–17) and dynorphin A(I-8): effects on electrically-elicited feeding in the rat. Brain Res 507:289–294

    PubMed  CAS  Google Scholar 

  • Carr KD, Simon EJ (1983) Effects of naloxone and its quaternary analogue on stimulation-induced feeding. Neuropharmacology 22:127–130

    PubMed  CAS  Google Scholar 

  • Carr KD, Simon EJ (1984) Potentiation of reward by hunger is opioid mediated. Brain Res 297:369–373

    PubMed  CAS  Google Scholar 

  • Carr KD, Bak TH, Giosannini TL, Simon EJ (1987) Antibodies to dynorphin A(1–13) but not β-endorphin inhibit electrically elicited feeding in the rat. Brain Res 422:384–388

    PubMed  CAS  Google Scholar 

  • Carr KD, Bak TH, Simon EJ, Portoghese PS (1989) Effects of the selective kappa opioid antagonist, nor-binaltorphimine, on electrically-elicited feeding in the rat. Life Sci 45:1787–1792

    PubMed  CAS  Google Scholar 

  • Clark CR, Birchmore B, Sharif NA, Hunter JC, Hill RG, Hughes J (1988) [3H]PD-117302: a selective radioligand for the kappa opioid receptor. Br J Pharmacol 93:618–626

    PubMed  CAS  Google Scholar 

  • Cooper SJ (1980) Naloxone: effects on food and water consumption in the nondeprived and deprived rat. Psychopharmacology 71:1–6

    PubMed  CAS  Google Scholar 

  • Cooper SJ (1983) Effects of opiate agonists and antagonists on fluid intake and saccharin choice in the rat. Neuropharmacology 22:323–328

    PubMed  CAS  Google Scholar 

  • Cooper SJ (1991) Interactions between endogenous opioids and dopamine: implications for reward and aversion. In: Willner P, Scheel-Kruger J (eds) The mesolimbic dopamine system: from motivation to action. Wiley, Chichester, pp 332–366

    Google Scholar 

  • Cooper SJ, Gilbert DB (1984) Naloxone suppresses fluid consumption in tests of choice between sodium chloride solutions and water in male and female waterdeprived rats. Psychopharmacology 84:362–367

    PubMed  CAS  Google Scholar 

  • Cooper SJ, Kirkham TC (1990) Basic mechanisms of opioids’ effects on eating and drinking. In: Reid LD (ed) Opioids, bulimia, and alcohol abuse and alcoholism. Springer, Berlin Heidelberg New York, pp 91–110

    Google Scholar 

  • Cooper SJ, Sanger DJ (1984) Endorphinergic mechanisms in food, salt and water intake: an overview. Appetite 5:1–6

    PubMed  CAS  Google Scholar 

  • Cooper SJ, Turkish S (1981) Food and water intake in the non-deprived pigeon after morphine or naloxone administration. Neuropharmacology 20: 1053–1058

    PubMed  CAS  Google Scholar 

  • Cooper SJ, Turkish S (1983) Effects of naloxone and its quaternary analogue on fluid consumption in water-deprived rats. Neuropharmacology 22:797–800

    PubMed  CAS  Google Scholar 

  • Cooper SJ, Turkish S (1989) Effects of naltrexone on food preference and concurrent behavioral responses in food-deprived rats. Pharmacol Biochem Behav 33:17–20

    PubMed  CAS  Google Scholar 

  • Cooper SJ, Jackson A, Morgan R, Carter R (1985) Evidence for opiate receptor involvement in the consumption of a high palatability diet in nondeprived rats. Neuropeptides 5:345–348

    PubMed  CAS  Google Scholar 

  • Cooper SJ, Jackson A, Kirkham TC, Turkish S (1988) Endorphins, opiates and food intake. In: Rodgers RJ, Cooper SJ (eds) Endorphins, opiates and behavioural processes. Wiley, Chichester, pp 143–186

    Google Scholar 

  • Cotton R, Giles MG, Miller L, Shaw JS, Timms D (1984) ICI 173,864: a highly selective antagonist for the opioid δ-receptor. Eur J Pharmacol 97:331–332

    PubMed  CAS  Google Scholar 

  • Di Chiara G, Imperato A (1988a) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the meso limbic system of freely moving rats. Proc Nat Acad Sci USA 85:5274–5278

    Google Scholar 

  • Di Chiara G, Imperato A (1988b) Opposite effects of μ- and κ-opiate agonists on dopamine-release in the, nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther 244:1067–1080

    PubMed  Google Scholar 

  • Drewnowski A, Gosnell B, Krahn DD, Canum K (1989) Sensory preferences for sugar and fat: evidence for opioid involvement. Appetite 12:206

    Google Scholar 

  • Dum J, Gramsch C, Herz A (1983) Activation of hypothalamic β-endorphin pools by reward induced by highly palatable food. Pharmacol Biochem Behav 18:443–447

    PubMed  CAS  Google Scholar 

  • Evans KR, Vaccarino FJ (1990) Amphetamine- and morphine-induced feeding:evidence for involvement of reward mechanisms. Neurosci Biobehav Rev 14:9–22

    PubMed  CAS  Google Scholar 

  • Fantino M, Hosotte J, Apfelbaum M (1986) An opioid antagonist, naltrexone, reduces preference for sucrose in humans. Am J Physiol 251:R91-R96

    PubMed  CAS  Google Scholar 

  • Ferguson-Segall M, Flynn JJ, Walker J, Margules DL (1982) Increased immunoreactive dynorphin and leu-enkephalin in posterior pituitary of obese mice (ob/ob) and super-sensitivity to drugs that act at kappa receptors. Life Sci 31:2233–2236

    PubMed  CAS  Google Scholar 

  • Gosnell BA, Majchrzak MJ (1989) Centrally administered opioid pep tides stimulate saccharin intake in nondeprived rats. Pharmacol Biochem Behav 33:805–810

    PubMed  CAS  Google Scholar 

  • Gosnell BA, Majchrzak MJ (1990) Effects of a selective mu opioid receptor agonist and naloxone on the intake of sodium chloride solutions. Psychopharmacology 100:66–71

    PubMed  CAS  Google Scholar 

  • Gosnell BA, Levine AS, Morley JE (1986) The stimulation of food intake by selective agonists of mu, kappa and delta opioid receptors. Life Sci 38:1081–1088

    PubMed  CAS  Google Scholar 

  • Gosnell BA, Majchrzak MJ, Krahn DD (1990a) Effects of preferential delta and kappa opioid receptor agonists on the intake of hypotonic saline. Physiol Behav 47:601–603

    PubMed  CAS  Google Scholar 

  • Gosnell BA, Krahn DD, Majchrzak MJ (1990b) The effects of morphine on diet selection are dependent upon baseline diet preferences. Pharmacol Biochem Behav 37:207–212

    PubMed  CAS  Google Scholar 

  • Grandison L, Guidotti A (1977) Stimulation of food intake by muscimol and beta endorphin. Neuropharmacology 16:533–536

    PubMed  CAS  Google Scholar 

  • Grill HJ, Spector AC, Schwartz GJ, Kaplan JM, Flynn FW (1987) Evaluating taste effects on ingestive behavior. In: Toates FM, Rowland NE (eds) Feeding and drinking. Elsevier, Amsterdam, pp 151–188

    Google Scholar 

  • Gunion MW, Peters RH (1981) Pituitary β-endorphin, naloxone, and feeding in several experimental obesities. Am J Physiol 241: R173–R184

    PubMed  CAS  Google Scholar 

  • Gysling K, Wang RY (1983) Morphine-induced activation of AlO dopamine neurons in the rat. Brain Res 277:119–127

    PubMed  CAS  Google Scholar 

  • Hamilton ME, Bozarth MA (1988) Feeding elicited by dynorphin (1–13) microinjections into the ventral tegmental area in rats. Life Sci 43:941–946

    PubMed  CAS  Google Scholar 

  • Hetherington AW, Ranson SW (1942) The spontaneous activity and food intake of rats with hypothalamic lesions. Am J Physiol 136:609–617

    CAS  Google Scholar 

  • Hewson G, Hill RG, Hughes J, Leighton GE, Turner WD (1987) The kappa agonists PD-117302 and V-50,488 produces a biphasic effect on 24 hour food intake in the rat. Neuropharmacology 26:1581–1584

    PubMed  CAS  Google Scholar 

  • Hoebel BG, Teitelbaum P (1962) Hypothalamic control of feeding and selfstimulation. Science 135:375–377

    PubMed  CAS  Google Scholar 

  • Holtzman SG (1974) Behavioral effects of separate and combined administration of naloxone and d-amphetamine. J Pharmacol Exp Ther 189:51–60

    PubMed  CAS  Google Scholar 

  • Holtzman SG (1975) Effects of narcotic antagonists on fluid intake in the rat. Life Sci 16:1465–1470

    PubMed  CAS  Google Scholar 

  • Islam AK, Bodnar RJ (1990) Selective opioid receptor antagonist effects upon intake of a high-fat diet in rats. Brain Res 508:293–296

    PubMed  CAS  Google Scholar 

  • Jackson A, Cooper SJ (1986) An observational analysis of the effect of the selective kappa opioid agonist, V50,488H, on feeding and related behaviours in the rat. Psychopharmacology 90:217–221

    PubMed  CAS  Google Scholar 

  • Jackson HC, Sewell RDE (1985a) Hyperphagia induced by 2-deoxy-o-glucose in the presence of the l5-opioid antagonist ICI 174,864. Neuropharmacology 24:815–817

    PubMed  CAS  Google Scholar 

  • Jackson HC, Sewell RDE (1985b) Are l5-opioid receptors involved in the regulation of food and water intake? Neuropharmacology 24:885–888

    PubMed  CAS  Google Scholar 

  • Jenck F, Quirion R, Wise RA (1987) Opioid receptor subtypes associated with ventral tegmental facilitation and periaqueductal gray inhibition of feeding. Brain Res 423:39–44

    PubMed  CAS  Google Scholar 

  • King BM, Castellanos FX, Kastin AJ, Berzas MC, Mauk MD, Olston GA, Olson RD (1979) Naloxone-induced suppression of food intake in normal and hypothalamic obese rats. Pharmacol Biochem Behav 11:729–732

    PubMed  CAS  Google Scholar 

  • Kirkham TC (1990) Enhanced anorectic potency of naloxone in rats sham feeding 30% sucrose: reversal by repeated naloxone administration. Physiol Behav 47:419–426

    PubMed  CAS  Google Scholar 

  • Kirkham TC, Cooper SJ (1988a) Attenuation of sham feeding by naloxone is stereospecific: evidence for opioid mediation of oro sensory reward. Physiol Behav 43:845–847

    PubMed  CAS  Google Scholar 

  • Kirkham TC, Cooper SJ (1988b) Naloxone attenuation of sham feeding is modified by manipulation of sucrose concentration. Physiol Behav 44:491–494

    PubMed  CAS  Google Scholar 

  • Kirkham TC, Cooper SJ (1989a) Interactions between sucrose concentration and the time course of naloxone suppression of sham feeding: evidence for opioid mediation of food palatability. Adv Biosci 75:655–658

    CAS  Google Scholar 

  • Kirkham TC, Cooper SJ (1989b) Ingestion of highly palatable sucrose induces naloxone supersensitivity in the sham-feeding rat. Ann NY Acad Sci 575:616–618

    Google Scholar 

  • Kirkham TC, Cooper SJ (1991) Opioid peptides in relation to the treatment of obesity and bulimia. In: Bloom SR, Burnstock G (eds) Peptides: a target for new drug development. IBC Technical Services, London, pp 28–44

    Google Scholar 

  • Leibowitz SF, Hor L (1982) Endorphinergic and noradrenergic systems in the paraventricular nucleus: effects on eating behavior. Peptides 3:421–428

    PubMed  CAS  Google Scholar 

  • Leighton GE, Hill RG, Hughes J (1988) The effects of the kappa agonist PD-117302 on feeding behaviour in obese and lean Zucker rats. Pharmacol Biochem Behav 31:425–429

    PubMed  CAS  Google Scholar 

  • Le Magnen J, Marfaing-Jallat P, Miceli D, Devos M (1980) Pain modulating and reward systems: a single brain mechanism? Pharmacol Biochem Behav 12:729–733

    PubMed  Google Scholar 

  • Lett BT (1989) Ingestion of sweet water enhances the rewarding effect of morphine in rats. Psychobiolggy 17:191–194

    CAS  Google Scholar 

  • Levine AS, Murray DS, Kneip J, Grace M, Morley JE (1982) Flavor enhances the antidipsogenic effect of naloxone. Physiol Behav 28:23–25

    PubMed  CAS  Google Scholar 

  • Levine AS, Grace M, Billington CJ, Portoghese, PS (1989) Injection of opioid antagonists into the paraventricular nucleus: effects on deprivation-induced feeding. Soc Neurosci Abstr 15:896

    Google Scholar 

  • Levine AS, Grace M, Billington CJ, Portoghese PS (1990) Nor-binaltorphimine decreases deprivation and opioid-induced feeding. Brain Res 534:60–64

    PubMed  CAS  Google Scholar 

  • Lowy MT, Maickel RP, Yim GKW (1980) Naloxone reduction of stress-related feeding. Life Sci 26:2113–2118

    PubMed  CAS  Google Scholar 

  • Lowy MT, Starkey C, Yim GKW (1981) Stereoselective effects of opiate agonists and antagonists on ingestive behavior in rats. Pharmacol Biochem Behav 15:591–596

    PubMed  CAS  Google Scholar 

  • Lynch WC (1986) Opiate blockade inhibits saccharin intake and blocks normal preference acquisition. Pharmacol Biochem Behav 24:833–836

    PubMed  CAS  Google Scholar 

  • Lynch WC, Burns G (1990) Opioid effects on intake of sweet solutions depend both on prior drug experience and on prior ingestive experience. Appetite 15:23–32

    PubMed  CAS  Google Scholar 

  • Lynch WC, Libby L (1983) Naloxone suppresses intake of highly preferred saccharin in food deprived and sated rats. Life Sci 33:1909–1914

    PubMed  CAS  Google Scholar 

  • Majeed NH, Przewlocka B, Wedzony K, Przewlocki R (1986) Stimulation of food intake following opioid microinjection into the nucleus accumbens septi in rats. Peptides 7:711–716

    PubMed  CAS  Google Scholar 

  • Mandenoff A, Fumeron F, Apfelbaum M, Margules DL (1982) Endogenous opiates and energy balance. Science 215:1536–1538

    PubMed  CAS  Google Scholar 

  • Mann PE, Arjune D, Romero M-T, Pasternak GW, Hahn EF, Bodnar RJ (1988a) Differential sensitivity of opioid-induced feeding to naloxone and naloxonazine. Psychopharmacology 94:336–341

    PubMed  CAS  Google Scholar 

  • Mann PE, Pasternak GW, Hahn EF, Currieri G, Lubin E, Bodnor RJ (1988b) Comparison of effects of chronic administration of naloxone and naloxonazine upon food intake and maintenance of body weight in rats. Neuropharmacology 27:349–355

    PubMed  CAS  Google Scholar 

  • Margules DL, Moisset B, Lewis MJ, Shibuya H, Pert CB (1978) β-Endorphin is associated with overeating in genetically obese mice (ob/ob) and rats (fa/fa) Science 202:988–991

    PubMed  CAS  Google Scholar 

  • Marks-Kaufman R (1982) Increased fat consumption induced by morphine administration in rats. Pharmacol Biochem Behav 16:949–955

    PubMed  CAS  Google Scholar 

  • Marks-Kaufman R, Kanarek RB (1980) Morphine selectively influences macronutrient intake in the rat. Pharmacol Biochem Behav 12:427–430

    PubMed  CAS  Google Scholar 

  • Marks-Kaufman R, Kanarek RB (1981) Modifications of nutrient selection induced by naloxone in rats. Psychopharmacology 74:321–324

    PubMed  CAS  Google Scholar 

  • Marks-Kaufman R, Plager A, Kanarek RB (1985) Central and peripheral contributions of endogenous opioid systems to nutrient selection in rats. Psychopharmacology 85:414–418

    PubMed  CAS  Google Scholar 

  • Matthews RT, German DC (1984) Electrophysiological evidence for excitation of rat ventral tegmental area dopamine neurons by morphine. Neuroscience 11:617–625

    PubMed  CAS  Google Scholar 

  • McLaughlin CL, Baile CA (1983) Nalmefene decreases meal size, food and water intake and weight gain in Zucker rats. Pharmacol Biochem Behav 19:235–240

    PubMed  CAS  Google Scholar 

  • McLaughlin CL, Baile CA (1984a) Feeding behavior responses of Zucker rats to naloxone. Physiol Behav 32:755–761

    PubMed  CAS  Google Scholar 

  • McLaughlin CL, Baile CA (1984b) Increased sensitivity of Zucker obese rats to naloxone is present at weaning. Physiol Behav 32:929–933

    PubMed  CAS  Google Scholar 

  • McLean S, Hoebel BG (1983) Feeding induced by opiates injected into the paraventricular hypothalamus. Peptides 4:287–282

    PubMed  CAS  Google Scholar 

  • Melchior J-C, Fantino M, Rozen R, Igoin L, Rigaud D, Apfelbaum M (1989) Effects of a low dose of naltrexone on glucose-induced allesthesia and hunger in humans. Pharmacol Biochem Behav 32:117 -121

    PubMed  CAS  Google Scholar 

  • Melchior J-C, Rigaud D, Colas-Linhart N, Rozen R, Fantino M, Apfelbaum M (1990) Negative allesthesia and decreased endogenous opiate system activity in anorexia nervosa. Pharmacol Biochem Behav 35:885–888

    PubMed  CAS  Google Scholar 

  • Morley JE, Levine AS (1980) Stress-induced eating is mediated through endogenous opiates. Science 209: 1259–1261

    PubMed  CAS  Google Scholar 

  • Morley JE, Levine AS (1982) The role of the endogenous opiates as regulators of appetite. Am J Clin Nutr 35:757–761

    PubMed  CAS  Google Scholar 

  • Morley JE, Levine AS, Gosnell BA, Billington CJ (1984) Which opioid receptor mechanism modulates feeding? Appetite 5:61–68

    PubMed  CAS  Google Scholar 

  • Mucha RF, Herz A (1985) Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology 86:274–280

    PubMed  CAS  Google Scholar 

  • Mucha RF, Iversen SD (1986) Increased food intake after opioid microinjections into nucleus accumbens and ventral tegmental area of rat. Brain Res 397:214–224

    PubMed  CAS  Google Scholar 

  • Nencini P (1988) The role of opiate mechanisms in the development of tolerance to the anorectic effects of amphetamines. Pharmacol Biochem Behav 30:755–764

    PubMed  CAS  Google Scholar 

  • Nencini P, Stewart J (1990) Chronic systemic administration of amphetamine increases food intake to morphine, but not to U50–488H, microinjected into the ventral tegmental area in rats. Brain Res 527:254–258

    PubMed  CAS  Google Scholar 

  • Ostrowski NL, Foley TL, Lind MD, Reid LD (1980) Naloxone reduced fluid intake: effects of water and food deprivation. Pharmacol Biochem Behav 12:431–435

    PubMed  CAS  Google Scholar 

  • Pfaffmann C (1969) Taste preference and reinforcement. In: Tapp JT (ed) Reinforcement and behavior. Academic, New York, pp 215–241

    Google Scholar 

  • Portoghese PS, Lipkowski AW, Takemori AE (1987) Binaltorphimine and norbinaltorphimine, potent and selective κ-opioid receptor antagonists. Life Sci 40:1287–1292

    PubMed  CAS  Google Scholar 

  • Roane DS, Martin RJ (1990) Continuous sucrose feeding decreases pain threshold and increased morphine potency. Pharmacol Biochem Behav 35:225–229

    PubMed  CAS  Google Scholar 

  • Robinson TE, Becker JB (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res Rev 11:157–198

    CAS  Google Scholar 

  • Rockwood GA, Reid LD (1982) Naloxone modifies sugar-water intake in rats drinking with open gastric fistulas. Physiol Behav 29:1175–1178

    PubMed  CAS  Google Scholar 

  • Rogers GH, Frenk H, Taylor AN, Liebeskind JC (1978) Naloxone suppression of food and water intake in deprived rats. Proc West Pharmacol Soc 21:457–460

    PubMed  CAS  Google Scholar 

  • Rogers PJ, Blundell JE (1984) Meal patterns and food selection during the development of obesity in rats fed a cafeteria diet. Neurosci Biobehav Rev 8:441–453

    PubMed  CAS  Google Scholar 

  • Rolls ET (1982) Feeding and reward. In: Hoebel BG, Novin D (eds) The neural basis of feeding and reward. Haer Institute, Brunswick, pp 323–337

    Google Scholar 

  • Rolls BJ, Rowe EA, Turner RC (1980) Persistent obesity in rats following a period of consumption of a mixed, high energy diet. J Physiol (Lond) 298:415–427

    CAS  Google Scholar 

  • Sanger DJ (1981) Endorphinergic mechanisms in the control of food and water intake. Appetite 2:193–208

    PubMed  CAS  Google Scholar 

  • Sanger DJ, McCarthy PS, Metcalf G (1981) The effects of opiate antagonists on food intake are stereospecific. Neuropharmacology 20:45–47

    PubMed  CAS  Google Scholar 

  • Schoenbaum GM, Martin RJ, Roane DS (1989) Relationships between sustained sucrose-feeding and opioid tolerance and withdrawal. Pharmacol Biochem Behav 34:911–914

    PubMed  CAS  Google Scholar 

  • Sclafani A, Springer D (1976) Dietary obesity in adult rats: similarities to hypothalamic and human obesity syndromes. Physiol Behav 17:461–471

    PubMed  CAS  Google Scholar 

  • Segall MA, Margules DL (1989) Central mediation of naloxone-induced anorexia in the ventral tegmental area. Behav Neurosci 103:857–864

    PubMed  CAS  Google Scholar 

  • Sewell RDE, Jawaharlal K (1980) Antagonism of 2-deoxy-o-glucose-induced hyperphagia by naloxone: possible involvement of endorphins. J Pharm Pharmacol 32:148–149

    PubMed  CAS  Google Scholar 

  • Shimomura Y, Oku J, Glick Z, Bray GA (1982) Opiate receptors, food intake and obesity. Physiol Behav 28:441–445

    PubMed  CAS  Google Scholar 

  • Shippenberg TS, Herz A (1987) Place preference conditioning reveals the involvement of D1-dopamine receptors in the motivational properties of jl- and K-opioid agonists. Brain Res 436:169–172

    PubMed  CAS  Google Scholar 

  • Simone DA, Bodnar RJ, Goldman EJ, Pasternak GW (1985) Involvement of opioid receptor subtypes in rat feeding behavior. Life Sci 36:829–833

    PubMed  CAS  Google Scholar 

  • Siviy SM, Reid LD (1983) Endorphinergic modulation of acceptability of putative reinforcers. Appetite 4:249–257

    PubMed  CAS  Google Scholar 

  • Span agel R, Herz A, Shippenberg TS (1990) Identification of the opioid receptor types mediating ~-endorphin-induced alterations in dopamine release in the nucleus accumbens. Eur J Pharmacol 190:177–184

    PubMed  CAS  Google Scholar 

  • Smith CFC (1987) 16-Me cyprenorphine (RX 80008M): a potent opioid antagonist with some selectivity. Life Sci 40:267–274

    PubMed  CAS  Google Scholar 

  • Smith GP, Gibbs J (1979) Postprandial satiety. In: Sprague J, Epstein A (eds) Progress in psychobiology and physiological psychology, vol 8. Academic, NewYork, pp 179–242

    Google Scholar 

  • Takemori AE, Ho BY, Naeseth JS, Portoghese PS (1988) Nor-binaltorphimine, a highly selective kappa-opioid antagonist in analgesic and receptor binding assays. J Pharmacol Exp Ther 246:255–258

    PubMed  CAS  Google Scholar 

  • Tepperman FS, Hirst M, Gowdey CW (1981) Hypothalamic injection of morphine:feeding and temperature responses. Life Sci 28:2459–2467

    PubMed  CAS  Google Scholar 

  • Thornhill JA, Saunders W (1984) Ventromedial and lateral hypothalamic injections of naloxone or naltrexone suppress the acute food intake of food-deprived rats. Appetite 5:25–30

    PubMed  CAS  Google Scholar 

  • Thornhill JA, Taylor B, Marshall W, Parent K (1982) Central, as well as peripheral naloxone administration suppresses feeding in food-deprived Sprague-Dawley and genetically obese (Zucker) rats. Physiol Behav 29:841–846

    Google Scholar 

  • Ukai M, Holtzman SG (1988) Effects of beta-funaltrexamine on ingestive behaviors in the rat. Eur J Pharmacol 153:161–165

    PubMed  CAS  Google Scholar 

  • Ukai M, Nakayama S, Kameyama T (1988) The opioid antagonist, Mr2266, specifically decreases saline intake in the mouse. Neuropharmacology 27:1027–1031.

    PubMed  CAS  Google Scholar 

  • Ward SJ, Portoghese PS, Takemori AE (1982a) Pharmacological profiles of betafunaltrexamine (β-FNA) and beta-chlornaltrexamine (β-CNA) on the mouse vas deferens preparation. Eur J Pharmacol 80:377–384

    PubMed  CAS  Google Scholar 

  • Ward SJ, Portoghese PS, Takemori AE (1982b) Pharmacological characterization in vivo of the novel opiate, beta-funaltrexamine. J Pharmacol Exp Ther 220:494–498

    PubMed  CAS  Google Scholar 

  • Weingarten HP, Watson SD (1982) Sham feeding as a procedure for assessing the influence of diet palatability on food intake. Physiol Behav 28:401–407

    PubMed  CAS  Google Scholar 

  • Yeomans MR, Wright P (1991) Lower pleasantness of palatable foods in nalmefenetreated human volunteers. Appetite 16:249–259

    PubMed  CAS  Google Scholar 

  • Yeomans MR, Wright P, Macleod HA, Critchley JAJH (1990) Effects of nalmefene on feeding in humans: dissociation of hunger and palatability. Psychopharmacology 100:426–432

    PubMed  CAS  Google Scholar 

  • Yirmiya R, Lieblich I, Liebeskind JC (1988) Reduced saccharin preference in CXBX (opioid receptor-deficient) mice. Brain Res 438:339–342

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cooper, S.J., Kirkham, T.C. (1993). Opioid Mechanisms in the Control of Food Consumption and Taste Preferences. In: Herz, A., Akil, H., Simon, E.J. (eds) Opioids II. Handbook of Experimental Pharmacology, vol 104 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77540-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77540-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77542-0

  • Online ISBN: 978-3-642-77540-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics