Dynamic Task Assignment in Distributed Manufacturing Systems

  • A. Aman
  • A. Balakrishnan
  • V. Chandru
Conference paper


Paradigms of decentralized and “on-line” control developed in the context of distributed computing systems will be relevant to distributed manufacturing systems of the future. In this paper, we explore certain aspects of decentralized task allocation in distributed systems using formal mathematical models and analyses to justify effective control strategies. We analyze two schemata for task allocation in distributed manufacturing systems modeled as stochastic processes. The first schema has to do with the selection of on-line policies for task assignment in distributed environments with the feature that the uncertainty in the status of machines can be removed by incurring query costs. In the second schema, optimal task allocation in the distributed batch processing model of the manufacturing system is resolved using techniques from Markov decision theory.


Completion Time Query Process Task Assignment Task Allocation Penalty Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Bisschop, W. Candler, J.H. Duloy and G.T. O’Mara, “The Indus Basin Model: A special application of two-level linear programming”, Mathematical Programming Study 20 (1982) 30-38.Google Scholar
  2. [2]
    R.M. Bryand and R.A. Finkel, “A Stable Distributed Scheduling Algorithm”, in Proceeding of the 2nd Int.Conf.Distrib.Comput.Sys., April 1981, pp.314-323.Google Scholar
  3. [3]
    H.Y. Chang and M. Livny, “Priority in Distributed System”, Proceedings of the Int. Conf. Distrib. Comput Sys, 1985, pp.123-130.Google Scholar
  4. [4]
    T.C.K. Chou and J.A. Abraham, “Load Balancing in Distributed Systems”, IEEE Trans. Software Eng., Vol.SE-8, No.4, July 1982, pp.401-412.Google Scholar
  5. [5]
    B. Dasarathy and M. Feridun, “Task Allocation Problems in the Synthesis of Distributed Real-Time Systems”, Proceedings of the Int. Conf. Distrib. Comput. Sys., 1984, pp.135-144.Google Scholar
  6. [6]
    R.K. Deb and R.F. Serfozo, “Optimal Control of Batch Service Queues”, in Adv. Appl. Prob. 5, 1973, pp. 340-361.Google Scholar
  7. [7]
    K. Efe, “Heuristic Models of Task Assignment Scheduling in Distributed System”, IEEE Computer, June 1982, pp.50-56.Google Scholar
  8. [8]
    A.K. Ezzat, R.D. Bergeron and J.L. Pokoski, “Task Allocation Heuristics for Distributed Computing System”, IEEE, 1986, pp.337-346.Google Scholar
  9. [9]
    R.G. Jeroslow, “The polynomial Hierarchy and a simple model for competitive analysis”, Mathematical Programming 32 (1985) 146–164.CrossRefGoogle Scholar
  10. [10]
    H. Kosahara and S. Narita, “Practical multiprocessors Scheduling Algorithm for Efficient Parallel Processing”, IEEE Trans. Comput., Vol. c-33, No. 11, November 1984, pp. 1023–1029.CrossRefGoogle Scholar
  11. [11]
    C. Nikolaon, G. Kar, D.F. Ferguson and G. Leitner, “Allocation and Relocation of Processes in Distributed Computer Systems”, in Current Advances in Distributed Computing and Communication, 1986.Google Scholar
  12. [12]
    G.S. Rao, H.S. Stone and T.C. Hu, “Scheduling in a Distributed Processor System with Limited Memory”, IEEE Trans.Computers.Google Scholar
  13. [13]
    A.H.G. Rinnooy Kan, Machine Scheduling Problems, Martinus Nijhoff, The Hague, 1976.Google Scholar
  14. [14]
    J.A. Stankovic, “An Application of Bayesian Decision Theory to Decentralized Control of Job Scheduling”, IEEE Trans. Comput, Vol. c-34, No. 2, Feb. 1985, pp. 117–130.CrossRefGoogle Scholar
  15. [15]
    J.A. Stankovic and I.S. Sidhu, “An Adaptive Bidding Algorithm for Processes, Clusters and Distributed Groups”, in Proc.4th Int. Conf. Distrib. Comput., May 1984, pp. 49-59.Google Scholar
  16. [16]
    A.M. Tilborg and L.D. Wittie, “Wave Scheduling — Decentralized Scheduling of Task Forces in multi-computers”, IEEE Trans. Comput, Vol.c-33, No.9, September 1984, pp.835-864.Google Scholar
  17. [17]
    I. Viniotis and A. Ephremides, “Extension of the Optimality of the Threshold Policy in Heterogeneous multiserver Queueing Systems”, Working Paper, University of Maryland, College Park, MD 20742 (1988).Google Scholar
  18. [18]
    D.M. Upton, “The Operation of Large Computer Controlled Manufacturing Systems,” Ph.D. Thesis, School of Industrial Engineering, Purdue University (1988).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1992

Authors and Affiliations

  • A. Aman
    • 1
  • A. Balakrishnan
    • 2
  • V. Chandru
    • 3
  1. 1.School of Industrial EngineeringPurdue UniversityW.LafayetteUSA
  2. 2.Sloan School of ManagementM.I.T.CambridgeUSA
  3. 3.School of Industrial EngineeringPurdue UniversityW. LafayetteUSA

Personalised recommendations