Advertisement

Chaos in Health and Disease — Phenomenology and Theory

  • Uwe an der Heiden
Chapter
Part of the Springer Series in Synergetics book series (SSSYN, volume 58)

Abstract

After presenting empirical data concerning apparent chaos in health and disease the modem concept of “deterministic chaos” is discussed and developed in some detail. This includes the description of a system in state space, the notions of chaotic or strange attractors, and of fractal dimensions. Subsequently, two main sources of chaos in biological systems are discussed. One of them, called “circular organization”, involves nonlinear interactions, feedback, and time delays. The other consists in the coupling of several oscillators. These basic mechanisms are elaborated in the form of mathematical models for epileptic seizures and for the endocrine system. The last section is devoted to the detection and quantification of chaos in empirical data with special application to the heart beat.

Keywords

Fractal Dimension Periodic Orbit Pyramidal Cell Epileptic Seizure Chaotic Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BABLOYANTZ, A. & DESTEXHE, A. 1988. Is the Normal Heart a Periodic Oscillator? Biol. Cybern. 58, 203–211.MathSciNetCrossRefGoogle Scholar
  2. VON BERTALANFFY, L., BEIER, W. & LAUE, R. 1977. Biophysik des Fließgleichgewichts. Vieweg, Braunschweig.Google Scholar
  3. BETTERMANN, H. & VAN LEEUWEN, P. 1991. Dimensional Analysis of RR Dynamics in 24 Hour Electrocardiograms. Acta Biotheoretica (submitted).Google Scholar
  4. BRABANT, G., BRABANT, A., RANFT, U., OCRAN, K., KÖHRLE, J., HESCH, R.D. & VON ZUR MÖHLEN, A. 1987. Circadian and Pulsatile Thyrotropin Secretion in Euthyroid Man Under the Influence of Thyroid Hormone and Glucocorticoid Administration. J. Clin. Endocrin. Metab., 65, 83–88.CrossRefGoogle Scholar
  5. COLEMAN, B.D. & RENNINGER, G.H. 1976. Theory of the Response of the Limulus Retina to Periodic Excitation. J. Math. Biol., 3, 103–120.MathSciNetzbMATHCrossRefGoogle Scholar
  6. DANZINGER, L. & ELMERGREEN, G.L. 1956. Bull. Math. Biophys., 18, 113.MathSciNetCrossRefGoogle Scholar
  7. FARMER, J.D., OTT, E. & YORKE, J.A. 1983. The Dimension of Chaotic Attractors. Physica, 7D, 153–180.MathSciNetADSGoogle Scholar
  8. GLASS, L. 1987. Coupled Oscillators in Health and Disease. In: RENSING, L., AN DER HEIDEN, U. & MACKEY, M.C. (Eds.): Temporal Disorder in Human Oscillatory Systems. Berlin: Springer-Verlag, 8–14.CrossRefGoogle Scholar
  9. GOLDBERGER, A.L. 1987. Nonlinear Dynamics, Fractals, Cardiac Physiology and Sudden Death. In: RENSING, L., AN DER HEIDEN, U. & MACKEY, M.C. (Eds.): Temporal Disorder in Human Oscillatory Systems. Berlin: Springer-Verlag, 118–125.CrossRefGoogle Scholar
  10. GOLDBERGER, A.L., BHARGAVA, V., WEST, B.J. & MANDELL, A.J. 1985. On a Mechanism of Cardiac Electrical Stability: The Fractal Hypothesis. Biophys. J., 48, 525–528.CrossRefGoogle Scholar
  11. GOLDBETER, A. 1990. Rhythmes et Chaos. Paris: Masson.Google Scholar
  12. GOODWIN, B.C. 1965. Oscillatory Behaviour in Enzymatic Control Processes. Advances in Enzyme Regulation, 3, 425–438.CrossRefGoogle Scholar
  13. GRIFFITHS, G.M. & FOX, T.A. 1938. Lancet ii: 409–415.CrossRefGoogle Scholar
  14. GUERRY, D., DALE, M., OMINE, M., PERRY, S. & WOLFF, S.M. 1973. Periodic Hematopoiesis in Human Cyclic Neutropenia. J. Clin. Invest, 52, 3220–3230.CrossRefGoogle Scholar
  15. HARMS, H.M., KAPTAINA, U., KÖLPMANN, W JR., BRABANT, G. & HESCH, R.-D. 1989. Pulse Amplitude and Frequency Modulation of Parathyroid Hormone in Plasma. J. Clin. Endocrinol. Metabol., 69, 843.CrossRefGoogle Scholar
  16. HASTINGS, S., TYSON, J. & WEBSTER, D. 1977. Existence of Periodic Solutions for Negative Feedback Cellular Control Systems. J. Diff. Equ., 25, 39–64.MathSciNetzbMATHCrossRefGoogle Scholar
  17. AN DER HEIDEN, U. 1978. Chaotisches Verhalten in zellulären Kontrollprozessen. In: L. RENSING & G. ROTH (Eds.): Zelluläre Kommunikations- und Kontrollmechanismen. Bremen: Universitätsverlag, 34–45.Google Scholar
  18. AN DER HEIDEN, U. 1979. Delays in Physiological Systems. J. Math. Biol., 8, 345–364.MathSciNetzbMATHCrossRefGoogle Scholar
  19. AN DER HEIDEN, U. 1991. Nonlinear Delay Equations in Neuro- and Endocrinology. In: J. Demongeot (Ed.): Mathematics Applied to Biology and Medicine. Grenoble University Press, 35–41.Google Scholar
  20. AN DER HEIDEN, U. 1991b. A Basic Mathematical Model of the Immune Dynamics (to appear).Google Scholar
  21. AN DER HEIDEN, U. 1991c. Der Organismus als selbstherstellendes dynamisches System. In: Zänker, K. (Ed.): Kommunikationsnetzwerke in unserem Körper. Heidelberg: Spektrum Akad. Verlag.Google Scholar
  22. AN DER HEIDEN, U. & MACKEY, M.C. 1982. The Dynamics of Production and Destruction: Analytic Insight into Complex Behaviour. J. Math. Biol., 16, 75–101.MathSciNetzbMATHCrossRefGoogle Scholar
  23. AN DER HEIDEN, U., MACKEY, M.C. & WALTHER, H.O. 1981. Complex Oscillations in a Simple Deterministic Neural Network. In: HOPPENSTAEDT, F. (Ed.): Mathematical Aspects of Physiology. Providence, R.I.: Amer. Math. Soc., 355–360.Google Scholar
  24. AN DER HEIDEN, U., ROTH, G. & SCHWEGLER, H. 1985. Die Organisation der Organismen: Selbstherstellung und Selbsterhaltung. Funktionelle Biol. Med., 5, 330–346.Google Scholar
  25. AN DER HEIDEN, U. & WALTHER, H.O. 1983. Existence of Chaos in Control Systems with Delayed Feedback. J. Differential Equations, 47, 273–295.MathSciNetzbMATHCrossRefGoogle Scholar
  26. HESCH, R.-D. (Ed.) 1989. Endocrinology. München: Urban & Schwarzenberg.Google Scholar
  27. KING, R., BARCHAS, J.D. & HUBERMANN, B. 1983. Theoretical Psycho-pathology: An Application of Dynamical Systems Theory to Human Behavior. In: BASAR, E., FLOHR, H. & HAKEN, H. (Eds.): Synergetics of the Brain. Berlin: Springer Verlag, 352–364.Google Scholar
  28. KNOBIL, E. 1981. Patterns of Hormonal Signals and Hormone Action. N. Engl. J. Med., 305, 1582–1583.CrossRefGoogle Scholar
  29. KOBAYASHI, M. & MUSHA, T. 1982. IEEE Trans. Biomed. Eng., 29, 456–475.CrossRefGoogle Scholar
  30. KRAUS, P.H., BITTNER, H.R., KLOTZ, P. & PRZUNTEK, H. 1987. Investigation of Agonistic/Antagonistic Movement in Parkinson’s Disease from an Ergodic Point of View. In: RENSING, L., AN DER HEIDEN, U. & MACKEY, M.C. (Eds.): Temporal Disorder in Human Oscillatory Systems. Berlin: Springer Verlag, 110–115.CrossRefGoogle Scholar
  31. LASOTA, A. & MACKEY, M.C. 1985. Probabilistic Properties of Deterministic Systems. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  32. LEMMER, B. 1984. Chronopharmakologie. Stuttgart: Wissenschaft. Verlagsgesellschaft.Google Scholar
  33. LI, Y.-X. & GOLDBETER, A. 1989. Frequency Specifity in Intercellular Communication: The Influence of Patterns of Periodic Signalling on Target Cell Responsiveness. Biophys. J., 55, 125–145.CrossRefGoogle Scholar
  34. LINDSAY, A. E. & BUDKIN, A. 1975. The Cardiac Arrythmias. Chicago: Yearb. Med. Publ. (2nd edition).Google Scholar
  35. MACKEY, M.C. 1978. A Unified Hypothesis for the Origin of Aplastic Anemia and Periodic Hematopoiesis. Blood, 51, 941–956.Google Scholar
  36. MACKEY, M.C. & GLASS, L. 1977. Oscillation and Chaos in Physiological Control Systems. Science, 197, 287–289.ADSCrossRefGoogle Scholar
  37. MACKEY, M. C. & DORMER, P. 1981. Enigmatic Hematopoiesis. In: ROTHENBERG M. (Ed.): Biomathematics and Cell Kinetics. Amsterdam: Elsevier/North Holland Biomedical Press, 87–103.Google Scholar
  38. MACKEY, M.C. & AN DER HEIDEN, U. 1984. The Dynamics of Recurrent Inhibition. J. Math. Biol., 19, 211–225.MathSciNetzbMATHCrossRefGoogle Scholar
  39. MALLET-PARET, J. & SMITH, H.L. 1991. The Poincaré-Bendixson Theorem for Monotone Cyclic Feedback Systems. J. Dynamics and Different. Equats. (to appear).Google Scholar
  40. MANDELBROT, B.B. 1987. The Fractal Geometry of Nature. Basel: Birkhäuser Verlag.zbMATHGoogle Scholar
  41. May, R. 1980. Mathematical Models in Whaling and Fisheries Management. Lectures on Mathematics in the Life Sciences, 13, 1–64.ADSGoogle Scholar
  42. MAYER-KRESS, G. (Ed.) 1986. Dimensions and Entropies in Chaotic Systems. Berlin: Springer Verlag.zbMATHGoogle Scholar
  43. MAYER-KRESS, G. YATES, F.E., BENTON L., KEIDEL, M., TIRSCH, W., PÖPPL, S.J. & GEIST, K. 1988. Dimensional Analysis of Nonlinear Oscillations in Brain, Heart and Muscle. Math. Biosci., 90, 155–182.MathSciNetzbMATHCrossRefGoogle Scholar
  44. MILTON, J. & LONGTIN, A. 1990. Clamping the Pupil Light Reflex with External Feedback: Evaluation of Constriction and Dilation from Cycling Measurements. Vision Res., 30, 515–525.CrossRefGoogle Scholar
  45. MILTON, J., AN DER HEIDEN, U., LONGTIN, A. & MACKEY, M.C. 1990. Complex Dynamics and Noise in Simple Neural Networks with Delayed Mixed Feedback. Biomed. Biochim. Acta, 49, 697–707.Google Scholar
  46. MONOD, J., WYMAN, J. & CHANGEUX, J.-P. 1965. On the Nature of Allosteric Transitions: A Plausible Model. J. Mol. Biol., 12, 88–118.CrossRefGoogle Scholar
  47. MURRAY, J. D. 1989. Mathematical Biology. Berlin: Springer-Verlag.zbMATHGoogle Scholar
  48. NISBET R. & GURNEY W.S.C. 1976. Nature, 263, 319.ADSCrossRefGoogle Scholar
  49. OTHMER, H.G. (Ed.) 1986. Nonlinear Oscillations in Biology and Chemistry. Lect Notes Biomath., 66. Berlin: Springer Verlag.zbMATHGoogle Scholar
  50. PRINCE, D.A. 1969. Microelectrode Studies of Penicillin foci. In: JASPER, H.H, WARD, & POPE, A. (Eds.): “Basic Mechanisms of the Epilepsies”. Boston: Little & Brown, 320–328.Google Scholar
  51. Rensing, L. & Jaeger, N.I. (Eds.) 1985. Temporal Order. Berlin: Springer Verlag.zbMATHGoogle Scholar
  52. RENSING, L., AN DER HEIDEN, U. & MACKEY, M.C. (Eds.) 1987. Temporal Disorder in Human Oscillatory Systems. Berlin: Springer Verlag.zbMATHGoogle Scholar
  53. RÖSSLER, R., GÖTZ, F. & RÖSSLER, O.E. 1979. Chaos in Endocrinology. Biophys. J., 25, 216a.Google Scholar
  54. Schuster, H.G. 1989. Deterministic Chaos. Weinheim: VCH Publishers.zbMATHGoogle Scholar
  55. SMITH, W. R. 1980. Hypothalamic Regulation of Pituitary Secretion of Luteinizing Hormone. Bull. Math. Biol., 42, 57–78.ADSzbMATHGoogle Scholar
  56. SPECHT, H & FRUHMAN, 1972. Bull. Physiol. Pathol. Respir., 8, 1075.Google Scholar
  57. STARK, L. 1977. Neurological Oscillations: Formulations of Mathematical Control Models and Applications to Clinical Syndromes. In: RENSING, L., AN DER HEIDEN, U. & MACKEY, M.C. (Eds.): Temporal Disorder in Human Oscillatory Systems. Berlin: Springer-Verlag.Google Scholar
  58. TYSON, JJ. & OTHMER, H.G. 1977. The Dynamics of Feedback Control Circuits in Biochemical Pathways. Progr. Theor. Biol., 5.Google Scholar
  59. WAZEWSKA-CZYZEWSKA, M. 1984. Erythrokinetics. Foreign Scientific Publications, National Center for Scientific, Technical and Economic Information.Google Scholar
  60. VERHULST, F. 1990. Nonlinear Differential Equations and Dynamical Systems. Berlin: Springer Verlag.zbMATHGoogle Scholar
  61. WEHR, T.A. & GOODWIN, F.K. 1979. Arch. Gen. Psychiatry, 36, 555–559.Google Scholar
  62. WEST, B. J. 1990. Fractal Physiology and Chaos in Medicine. Singapore: World Scientific.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Uwe an der Heiden

There are no affiliations available

Personalised recommendations