Advertisement

Interactional Bifurcations in Human Interaction — A Formal Approach

  • Otto Rössler
Part of the Springer Series in Synergetics book series (SSSYN, volume 58)

Abstract

Dynamical systems can undergo a change of qualitative behavior as an external parameter is varied. This is called a bifurcation or “function change.” A striking example is the explanation of morphogenesis proposed by Turing: Two symmetrically coupled systems (“cells”) undergo a bifurcation under a symmetric coupling even though — due to the symmetry of the coupling — the coupling has no effect whatsoever as long as both cells are in the same state. This counterintuitive result deserves the name “interactional bifurcation.” Two new proposals are made. First, autonomous optimiziers (formal brains) can undergo interactional bifurcations, too. Second, the resulting function change can be radical: A previous “autistic” type of functioning may give way to a “thoughtful” one which includes rational and moral behavior. A working computer model has yet to be given. Potential applications to the real world are based on the finding of van Hooff that only the human primate exhibits a symmetric type of interactional cross coupling (a happy laugh mimicking a friendly smile). The proposed importance of this fact is consistent with an empirical finding of Fraiberg. Therapeutic consequences in the spirit of Bateson suggest themselves.

Keywords

Dynamical System Theory Control Space Symmetric Coupling Symmetric Type Formal Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BATESON, G. 1972. Steps to an Ecology of Mind. New York: Ballantine.Google Scholar
  2. FRAIBERG, S. 1977. Insights from the Blind. Comparative Studies of Blind and Sighted Infants. New York: Basic Books, Chap. 11.Google Scholar
  3. HABERMAS, J. 1970. Towards a theory of communicative competence. Inquiry 13, 360–376.CrossRefGoogle Scholar
  4. HIRSCH, M.W. and S. SMALE 1974. Differential Equations, Dynamical Systems, and Linear Algebra New York: Academic Press.zbMATHGoogle Scholar
  5. KAWAI, M. 1975. Precultural behavior of the Japanese monkey. In Kurth, G. and I. Eibl-Eibesfeldt (Eds.): Hominisation und Verhalten, 32–55. Stuttgart: G. Fischer.Google Scholar
  6. KNöTIG, H. 1972. Bemerkungen zum Begriff “Humanökologie”. Humanökol. Bl. 1 (H. 2/3), 3–140.Google Scholar
  7. LöFGREN, L. 1968. An axiomatic explanation of complete self-reproduction. Bull. Math. Biophysics 30, 415–426.zbMATHCrossRefGoogle Scholar
  8. LORENZ, K. 1973. Die Rückseite des Spiegels, Versuch einer Naturgeschichte des menschlichen Erkennens (The Flip-Side of the Mirror, Essay on a Natural History of Human Understanding). München: Piper.Google Scholar
  9. MEAD, G.H. 1926. The objective reality of perspectives. Proc. 6th Int Congr. Philos., 75–85.Google Scholar
  10. MEAD, G.H. 1934. Mind, Self, and Society. Chicago: University of Chicago Press.Google Scholar
  11. MUSTERLE, W. and O.E. RöSSLER 1986. Computer faces: The human Lorenz matrix. BioSystems 19, 61–80.CrossRefGoogle Scholar
  12. PITOT, H.D. and C. HEIDELBERGER 1963. Metabolic regulatory circuits and carcinogenesis. Cancer Res. 23, 1693–1700.Google Scholar
  13. PREWO, R., J. RITSERT und E. STRACKE 1973. Systemtheoretische Ansätze in der Soziologie (System-theoretic Approaches in Sociology). Hamburg-Reinbek: RowohltGoogle Scholar
  14. RASHEVSKY, N. 1947. A problem in mathematical biophysics of interaction of two or more individuals which may be of interest in mathematical sociology. Bull. Math. Biophysics 9, 9–15.CrossRefGoogle Scholar
  15. ROSEN, R. 1967. Optimality Principles in Biology. London: Butterworth.zbMATHGoogle Scholar
  16. ROSEN, R. 1968. On analogous systems. Bull. Math. Biophysics 30, 481–492.zbMATHCrossRefGoogle Scholar
  17. ROSEN, R. 1970. Dynamical Systems Theory in Biology, Vol. 1. New York: Wiley.Google Scholar
  18. ROSEN, R. 1972. Relationale Biologie (Relational Biology). Fortschritte der experimentellen und theoretischen Biophysik, Vol. 15. Leipzig: Thieme.Google Scholar
  19. ROSEN, R. 1978. Fundamentals of Measurement and Representation of Natural Systems. New York: North-Holland.Google Scholar
  20. RöSSLER, O.E. 1968. Zum Tier-Mensch-Problem aus der Sicht der theoretischen Verhaltensbiologie (On the animal-man problem from the vantage point of the theoretical biology of behavior). Schweizer Rundschau 67, 529–532.Google Scholar
  21. RöSSLER, O.E. 1974. Adequate locomotion strategies for an abstract organism in an abstract environment — A relational approach to brain function. Lecture Notes in Biomathematics 4, 343–369. Berlin: Springer-Verlag.Google Scholar
  22. RöSSLER, O.E. 1975. Mathematical model of a proposed treatment of early infantile autism — Facilitation of the “dialogical catastrophe” in motivation interaction. In Martin, J.I. (Ed.): Proceedings of the San Diego Biomedical Symposium 1975, Vol. 14, 105–110. San Diego: San Diego Biomedical Symposium Press.Google Scholar
  23. RöSSLER, O.E. 1976a. Prescriptive relational biology and bacterial Chemotaxis. J. Theor. Biol. 62, 141–157.CrossRefGoogle Scholar
  24. RöSSLER, O.E. 1976b. Cross-stimulation: Theoretical implications. In Wauquier, A. and E. Rolls (Eds.), Brain Stimulation Reward, 600–605. Amsterdam: North-Holland.Google Scholar
  25. RöSSLER, O.E. 1976c. A relational approach to the problem of man-animal behavior comparison. In Cranach, M. von (Ed.): Models of Inference from Animal to Human Behavior, 103–117. Aldine: Chicago.Google Scholar
  26. RöSSLER, O.E. 1978. Deductive biology — some cautious steps. Bull. Math. Biol. 40, 45–58.MathSciNetGoogle Scholar
  27. RöSSLER, O.E. 1979. Path optimization on the basis of direction optimization. In Trappl, R., F. de P. Hanika and F.R. Pichler (Eds.): Progress in Cybernetics and Systems Research, Vol. 5, 546–549. New York: Hemisphere-Wiley.Google Scholar
  28. RöSSLER, O.E. 1981a. An artificial cognitive map system. BioSystems 13, 203–209.CrossRefGoogle Scholar
  29. RöSSLER, O.B. 1981b. An artificial cognitive-plus-motivational system. Progr. Theor. Biol. 6, 147–160.Google Scholar
  30. RöSSLER, O.E. 1983. Artificial cognition-plus-motivation and hippocampus. In Seifert, W. (Ed.) Neurobiology of the Hippocampus, 573–588. New York: Academic.Google Scholar
  31. RöSSLER, O.E. 1987. Chaos in coupled optimizers. Ann. N.Y. Acad. Sci. 504, 229–240.ADSCrossRefGoogle Scholar
  32. Rössler, O.E., G. Kampis, W. Nadler, W. Musierle, B. Schapiro and P. Urban 1990. Highly parallel implemenation of autonomous direction optimizer with cognition. Biophys. J. 57, 194a. (Abstract.)Google Scholar
  33. TOLMAN, E.C. 1948. Cognitive maps in rats and men. Psychol. Rev. 55, 189–208.CrossRefGoogle Scholar
  34. TSYPKIN, Ya.Z. 1973. Foundations of the Theory of Learning Systems. New York: Academic.zbMATHGoogle Scholar
  35. TURING, A.M. 1952. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London, Series B, 237, 37–72.ADSCrossRefGoogle Scholar
  36. VAN HOOFF, J.A.R.A.M. 1972. A comparative approach to the phytogeny of laughter and smiling. In Hinde, R.A. (Ed.): Non-Verbal Communication, 209–241. Cambridge: Cambridge University Press.Google Scholar
  37. ZEEMAN, E.C. 1971. The geometry of catastrophe. Times Literary Supplement, 10th December 1971, 1556–1558.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Otto Rössler

There are no affiliations available

Personalised recommendations