Skip to main content

Physiological Adaptations in Decapodan Crustaceans for Life in Fresh Water

  • Chapter
Advances in Comparative and Environmental Physiology

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 15))

Abstract

In recent years, there have been several excellent review articles on aspects of decapod crustacean physiology including ventilation and circulation (Taylor 1982; Cameron and Mangum 1983; McMahon and Wilkens 1983; McMahon and Burggren 1988), acid-base balance (Truchot 1983; Cameron 1986), gas transport (McMahon 1981; Mangum 1983), and osmoregulation (Mantel and Farmer 1983). These have focused predominantly on the marine decapods that constitute the majority (90%) of crustacean species. While research has steadily continued on freshwater (FW) decapods such as the crayfish, this information is typically “lost” among the wealth of information on marine species. This is regrettable because FW species exhibit some of the most sophisticated physiological mechanisms among crustaceans. To name but a few, they have well-developed branchial ion uptake mechanisms, a kidney with the unique ability to produce dilute urine, and adaptations for molting and postmolt calcification in an inhospitable environment. Furthermore, the physicochemical properties of FW dictate that environmental challenges such as hypoxia, hyperoxia, hypercapnia, and aerial exposure, as well as man-made problems such as acidification, are experienced more routinely by FW as opposed to marine species. In summary, therefore, it would appear that FW decapods deserve separate recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abele LG (1982) Biogeography. In: Abele LG (ed) The biology of crustacea, vol 1. Academic Press, New York, pp 241–304

    Google Scholar 

  • Ahearn GA, Clay LP (1989) Kinetic analysis of electrogenic 2Na+-1H+ antiport in crustacean hepatopancreas. Am J Physiol 257:R484-R493

    PubMed  CAS  Google Scholar 

  • Bergmiller E, Bielawski J (1970) Role of the gills in osmotic regulation in the crayfish Astacus leptodactylus. Comp Biochem Physiol 37:83–91

    Google Scholar 

  • Bishop JA (1967) The zoogeography of the Australian freshwater decapod Crustacea. In: Weatherly AH (ed) Australian inland waters and their fauna. Australian National Univ Press, Canberra, pp 107–122

    Google Scholar 

  • Blatchford JG (1971) Hemodynamics of Carcinus maenas (L.). Comp Biochem Physiol A 39:109–202

    Google Scholar 

  • Bock F (1925) Die Respirationsorgane von Potamobius astacus Leach. (Astacus fluviatilis Fabr.). Ein Beitrag zur Morphologie der Decapoden. Z Wiss Zool 124:51–117

    Google Scholar 

  • Born JW (1968) Osmoregulatory capacities of two Caridean shrimps, Syncaris pacifica (Atyidae) and Palaemon macrodactylus (Palaemonidae). Biol Bull 134:235–245

    PubMed  CAS  Google Scholar 

  • Bryan GW (1960) Sodium regulation in the crayfish Astacus fluviatilis. I. The normal animal. J Exp Biol 37:83–99

    CAS  Google Scholar 

  • Bryan GW (1966) The metabolism of Zn and 65Zn in crabs, lobsters and freshwater crayfish. In: Aberg B, Hungate FP (eds) Radioecological concentration processes. Pergamon Press, Oxford, pp 1005–1016

    Google Scholar 

  • Bryan GW (1967) Zinc regulation in the freshwater crayfish (including some comparative copper analyses). J Exp Biol 46:281–296

    PubMed  CAS  Google Scholar 

  • Bryan GW (1968) Concentrations of zinc and copper in the tissues of decapod crustaceans. J Mar Biol Assoc U K 48:303–321

    CAS  Google Scholar 

  • Bryan GW (1976) Some aspects of heavy metal tolerance in aquatic organisms. In: Lockwood APM (ed) Effects of pollutants on aquatic organisms. Cambridge University Press, Cambridge, pp 7–34

    Google Scholar 

  • Burggren WW, McMahon BR (1988a) Biology of the land crabs: an introduction. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, New York, pp 1–5

    Google Scholar 

  • Burggren WW, McMahon BR (1988b) Circulation. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, New York, pp 298–332

    Google Scholar 

  • Burggren WW, McMahon BR, Costerton JW (1974) Branchial water and blood-flow patterns and the structure of the gill of the crayfish Procambarus clarkii. Can J Zool 52:1511–1518

    PubMed  CAS  Google Scholar 

  • Burtin B, Massabuau JC (1988) Switch from metabolic to ventilatory compensation of extracellular pH in crayfish. J Exp Biol 137:411–421

    Google Scholar 

  • Burtin B, Massabuau JC, Dejours P (1986) Ventilatory regulation of extracellular pH in crayfish exposed to changes in water titration alkalinity and NaCl concentration. Respir Physiol 65:235–243

    PubMed  CAS  Google Scholar 

  • Cameron JN (1986) Acid-base equilibria in invertebrates. In: Heisler N (ed) Acid-base regulation in animals. Elsevier, New York, pp 357–394

    Google Scholar 

  • Cameron JN (1989a) Acid-base homeostasis: past and present perspectives. Physiol Zool 62:845–865

    Google Scholar 

  • Cameron JN (1989b) Post-moult calcification in the blue crab Callinectes sapidus: timing and mechanism. J Exp Biol 143:285–304

    CAS  Google Scholar 

  • Cameron JN (1989c) The respiratory physiology of animals. Oxford University Press, New York

    Google Scholar 

  • Cameron JN, Batterton CV (1978) Antennal gland function in the freshwater blue crab, Callinectes sapidus: water, electrolyte, acid-base and ammonia excretion. J Comp Physiol 123:143–148

    CAS  Google Scholar 

  • Cameron JN, Mangum CP (1983) Environmental adaptations of the respiratory system: ventilation, circulation and oxygen transport. In: Vernberg FJ, Vernberg WB (eds) The biology of crustacea, vol 8. Academic Press, New York, pp 43–63

    Google Scholar 

  • Chaisemartin C (1964) Importance des gastroliths dans l’économie du calcium chez Astacus pallipes Lereboullet. Bilan calcique de l’exuviation. Vie Milieu 15:457–474

    Google Scholar 

  • Chassard-Bouchard C (1981) Rôle des lysosomes dans le phénomène de concentration du cadmium. Microanalyse par spectrographie des rayons X. C R Hebd Séances Acad Sci Paris Sér 3 293:261–265

    Google Scholar 

  • Copeland DE, Fitzjarrell AT (1968) The salt absorbing cells in the gills of the blue crab (Callinectes sapidus Rathbun) with notes on modified mitochondria. Z Zellforsch 92:1–22

    PubMed  CAS  Google Scholar 

  • Cornell J (1976) Aspects of salt and water balance in two osmoconforming crabs, Libinia emarginata and Pugettia producta (Brachyura: Majidae). PhD Thesis, University of California, Berkeley (University Microfilms, Ann Arbor, Michigan)

    Google Scholar 

  • Dandy JWT, Ewer DW (1961) The water economy of three species of the amphibious crab, Potamon. Trans R Soc S Afr 363:137–162

    Google Scholar 

  • Dejours P, Armand J (1982) Variations de l’équilibre acid-base de l’hémolymphe d’ecrevisse en fonction des changements de certains propriétés physicochimiques de l’eau ambiante. C R Acad Sci Paris 295:509–512

    CAS  Google Scholar 

  • Dejours P, Armand J (1983) Acid-base balance of crayfish hemolymph: effects of simultaneous changes of ambient temperature and water oxygenation. J Comp Physiol B 149:463–468

    Google Scholar 

  • Dejours P, Beekenkamp H (1978) L’équilibre acid-base de l’hémolymphe au cours de la mue chez l’ecrevisse. C R Acad Sci Paris 286:1895–1898

    CAS  Google Scholar 

  • Dejours P, Truchot JP (1988) Respiration of the emerged shore crab at variable ambient oxygenation. J Comp Physiol 158:387–391

    Google Scholar 

  • Dejours P, Armand J, Beekenkamp H (1982) The effect of ambient chloride concentration changes on branchial chloride-bicarbonate exchanges and hemolymph acid-base balance of crayfish. Respir Physiol 48:375–386

    PubMed  CAS  Google Scholar 

  • Dickson GW, Franz R (1980) Respiration rates, ATP turnover and adenylate energy charge in excised gills of surface and cave crayfish. Comp Biochem Physiol A 65:375–380

    Google Scholar 

  • Dickson JS, Dillaman RM (1985) Distribution and ultrastructure of osmoregulation and respiratory filaments in the gills of the crayfish. Am Zool 24:214

    Google Scholar 

  • Ehrenfeld J (1974) Aspects of ionic transport mechanisms in crayfish Astacus leptodactylus. J Exp Biol 61:57–70

    PubMed  CAS  Google Scholar 

  • El Haj AJ, Innes AJ, Taylor EW (1986) Ultrastructure of the pulmonary, cutaneous and branchial gas exchange organs of the Trinidad mountain crab. J Physiol 373:84P

    Google Scholar 

  • Fingerman SW (1985) Non-metal environmental pollutants and growth. In: Wenner AD (ed) Crustacean issues 3. Factors in adult growth. Balkema, Rotterdam, pp 219–234

    Google Scholar 

  • Fisher JM (1972) Fine structural observations on the gill filaments of the fresh-water crayfish Astacus pallipes (Lereboullet). Tissue Cell 4:287–299

    PubMed  CAS  Google Scholar 

  • Flik G, Vanrijs JH, Wendelaar Bonga SE (1985) Evidence for high affinity Ca2+-ATPase activity and ATP-driven Ca2+-transport in membrane preparations of the gill epithelium of the cichlid fish Oreochromis mossambicus. J Exp Biol 119:335–347

    CAS  Google Scholar 

  • France RL (1984) Comparative tolerance to low pH of three life stages of the crayfish Orconectes virilis. Can J Zool 62:2360–2363

    Google Scholar 

  • France RL (1987a) Calcium and trace metal composition of crayfish Orconectes virilis in relation to experimental lake acidification. Can J Fish Aquat Sci 44:107–113

    CAS  Google Scholar 

  • France RL (1987b) Reproductive impairment of the crayfish Orconectes virilis in response to acidification of lake 223. Can J Fish Aquat Sci 44:97–106

    CAS  Google Scholar 

  • Gaillard S, Malan A (1983) Intracellular pH regulation in response to ambient hyperoxia or hypercapnia in the crayfish. Mol Physiol 4:231–243

    Google Scholar 

  • Gaillard S, Malan A (1985) Intracellular pH-temperature relationship in a water breather, the crayfish. Mol Physiol 7:1–16

    Google Scholar 

  • Gaillard S, Rodeau JL (1987) Na+/H+ exchange in crayfish neurons: dependence on extracellular sodium and pH. J Comp Physiol 157:435–444

    Google Scholar 

  • Galler S, Moser H (1986) The ionic mechanism of intracellular pH regulation in crayfish muscle fibers. J Physiol (Lond) 374:137–151

    CAS  Google Scholar 

  • Gannon AT, DeMarco VG, Morris T, Wheatly MG (1990) Metabolism and available oxygen for cave-dwelling crayfish. Am Zool 30:110A

    Google Scholar 

  • Greenaway P (1970) Sodium regulation in freshwater mollusc Limnaea stagnalis (L) (Gastropoda: Pulmonata). J Exp Biol 53:147–163

    PubMed  CAS  Google Scholar 

  • Greenaway P (1972) Calcium regulation in the freshwater crayfish Austropotamobius pallipes (Lereboullet). I. Calcium balance in the intermoult animal. J Exp Biol 57:417–487

    Google Scholar 

  • Greenaway P (1974a) Total body calcium and haemolymph calcium concentrations in the crayfish Austropotamobius pallipes (Lereboullet). J Exp Biol 61:19–26

    PubMed  CAS  Google Scholar 

  • Greenaway P (1974b) Calcium balance at the premoult stage of the freshwater crayfish Austropotamobius pallipes (Lereboullet). J Exp Biol 61:27–34

    PubMed  CAS  Google Scholar 

  • Greenaway P (1974c) Calcium balance at the postmoult stage of the freshwater crayfish Austropotamobius pallipes (Lereboullet). J Exp Biol 61:35–45

    PubMed  CAS  Google Scholar 

  • Greenaway P (1979) Fresh water invertebrates. In: Maloiy GMO (ed) Comparative physiology of osmoregulation in animals. Academic Press, London, pp 117–173

    Google Scholar 

  • Greenaway P (1980) Water balance and urine production in the Australian arid-zone crab Holthuisana transversa. J Exp Biol 87:237–246

    Google Scholar 

  • Greenaway P (1981) Sodium regulation in the freshwater/land crab Holthuisana transversa. J Comp Physiol B142:451–456

    Google Scholar 

  • Greenaway P (1984) The relative importance of the gills and lungs in the gas exchange of amphibious crabs of the genus Holthuisana. Aust J Zool 32:1–6

    Google Scholar 

  • Greenaway P (1985) Calcium balance and moulting in the crustacea. Biol Rev 60:425–454

    CAS  Google Scholar 

  • Greenaway P (1988) Ion and water balance. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, New York, pp 211–248

    Google Scholar 

  • Greenaway P, MacMillen RE (1978) Salt and water balance in the terrestrial phase of the inland crab Holthuisana (Austrothelphusa) transversa Martens (Parathelphusoidea: Sundathelphusidae). Physiol Zool 51:217–229

    CAS  Google Scholar 

  • Greenaway P, Taylor HH (1976) Aerial gas exchange in Australian arid-zone crab Parathelphusa transversa Von Martens. Nature (Lond) 262:711–713

    CAS  Google Scholar 

  • Greenaway P, Bonaventura J, Taylor HH (1983a) Aquatic gas exchange in the freshwater/land crab Holthuisana transversa. J Exp Biol 103:225–236

    Google Scholar 

  • Greenaway P, Taylor HH, Bonaventura J (1983b) Aerial gas exchange in Australian freshwater/land crabs of the genus Holthuisana. J Exp Biol 103:237–251

    Google Scholar 

  • Harris RR (1975) Urine production rate and urinary sodium loss in the fresh water crab Potamon edulis. J Comp Physiol 96:143–153

    CAS  Google Scholar 

  • Harris RR, Micallef H (1971) Osmotic and ionic regulation in Potamon edulis, a fresh water crab from Malta. Comp Biochem Physiol A 38:769–776

    CAS  Google Scholar 

  • Hassall CH (1979) Respiratory physiology of the crayfish Procambarus clarki. MSc Thesis, University of Calgary, Calgary, Alberta Canada.

    Google Scholar 

  • Henry RP (1984) The role of carbonic anhydrase in blood ion and acid-base regulation. Am Zool 24:241–251

    CAS  Google Scholar 

  • Henry RP, Cameron JN (1982) The distribution and partial characterization of carbonic anhydrase in selected aquatic and terrestrial decapod crustaceans. J Exp Zool 221:309–321

    CAS  Google Scholar 

  • Henry RP, Wheatly MG (1992) Interaction of respiration, ion regulation, and acid-base balance in marine crabs. Am Zool 32:407–416

    CAS  Google Scholar 

  • Hughes GM, Knights B, Scammel CA (1969) The distribution of PO2 and hydrostatic pressure changes within the branchial chambers of the shore crab Carcinus maenas. J Exp Biol 51:203–220

    Google Scholar 

  • Huxley TH (1879) The crayfish. Kegan, Paul, Trench, London

    Google Scholar 

  • Innes AJ, Taylor EW (1986) The evolution of air-breathing in crustaceans: a functional analysis of branchial, cutaneous, and pulmonary gas exchange. Comp Biochem Physiol A 85:621–637

    Google Scholar 

  • Innes AJ, Taylor EW, El Haj AJ (1987) Air-breathing in the Trinidad mountain crab: a quantum leap in the evolution of the invertebrate lung. Comp Biochem Physiol A 87:1–9

    Google Scholar 

  • Jarvenpaa T, Nikinmaa M, Westman K, Soivio A (1983) Effects of hypoxia on the haemolymph of the freshwater crayfish, Astacus astacus L., in neutral and acid water during the intermolt period. In: Goldman CR (ed) Freshwater crayfish. V. Papers from the 5th Int Symp on Freshwater crayfish. AVI, Westport CT, pp 86–97

    Google Scholar 

  • Jay D, Holdich DM (1981) The distribution of the crayfish, Austropotamobius pallipes, in British waters. Freshwater Biol 11:121–129

    Google Scholar 

  • Kamemoto FI, Keister SM, Spalding AE (1962) Cholinesterase activities and sodium movement in the crayfish kidney. Comp Biochem Physiol 7:81–87

    CAS  Google Scholar 

  • Kerley DE, Pritchard AW (1967) Osmotic regulation in the crayfish Pacifastacus leniusculus stepwise acclimated to dilutions of seawater. Comp Biochem Physiol 20:101–113

    CAS  Google Scholar 

  • Kirschner LB (1979) Control mechanisms in crustaceans and fishes. In: Gilles R (ed) Mechanisms of osmoregulation in animals. Wiley Interscience, Chichester, pp 157–222

    Google Scholar 

  • Kirschner LB, Greenwald L, Kerstetter TH (1973) Effect of amiloride on sodium transfer across body surface of freshwater animals. Am J Physiol 224:832–837

    PubMed  CAS  Google Scholar 

  • Larimer JL, Gold AH (1961) Responses of the crayfish, Procambarus simulans, to respiratory stress. Physiol Zool 134:167–176

    Google Scholar 

  • Leivestad H, Hendrey G, Muniz IP, Snekvik E (1976) Effects of acid precipitation on freshwater organisms. In: Braekke FH (ed) Impact of acid precipitation on forest and freshwater ecosystems in Norway. SNSF Project FR6/76, Oslo, pp 87–111

    Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York, pp 120–122

    Google Scholar 

  • Lowery RS (1988) Growth, moulting and reproduction. In: Holdich DM, Lowery RS (eds) Freshwater crayfish: biology, management and exploitation. Croom Helm, London, pp 83–113

    Google Scholar 

  • Lutz PL (1969) Salt and water balance in the West African fresh water/land crab Sudanonautes africanus africanus and the effects of desiccation. Comp Biochem Physiol 30:469–480

    CAS  Google Scholar 

  • Malley DF (1980) Decreased survival and calcium uptake by the crayfish Orconectes virilis in low pH. Can J Fish Aquat Sci 37:364–372

    CAS  Google Scholar 

  • Malley DF, Chang PSS (1985) Effects of aluminum and acid on calcium uptake by the crayfish Orconectes virilis. Arch Environ Contam Toxicol 14:739–747

    CAS  Google Scholar 

  • Maluf NSR (1941) Secretion of inulin, xylose, and dyes and its bearing on the manner of urine formation by the kidney of the crayfish. Biol Bull 8:235–260

    Google Scholar 

  • Mangum CP (1983) Oxygen transport in the blood. In: Mantel LH (ed) The biology of crustacea, vol 5. Academic Press, London, pp 373–429

    Google Scholar 

  • Mangum CP (1985) Molting in the blue crab Callinectes sapidus: a collaborative study of intermediary metabolism, respiration and cardiovascular function, and ion transport. Preface. J Crustacean Biol 5:185–187

    Google Scholar 

  • Mantel LH, Farmer LL (1983) Osmotic and ionic regulation. In: Mantel LH (ed) The biology of crustacea, vol 5. Academic Press, London, pp 53–161

    Google Scholar 

  • Massabuau JC, Burtin B (1984) Regulation of oxygen consumption in the crayfish Astacus leptodactylus at different levels of oxygenation: role of peripheral 02 chemoreception. J Comp Physiol 155:43–49

    Google Scholar 

  • Massabuau JC, Burtin B (1985) Ventilatory CO2 reflex response in hypoxic crayfish Astacus leptodactylus acclimated to 20°C. J Comp Physiol 156:115–118

    Google Scholar 

  • Massabuau JC, Eclancher B, Dejours P (1980) Ventilatory reflex response to hyperoxia in the crayfish, Astacus pallipes. J Comp Physiol 140:193–198

    Google Scholar 

  • Maynard DM (1960) Circulation and heart function. In: Wolverkamp HP, Waterman TH (eds) The physiology of crustacea, vol I. Academic Press, New York, pp 161–226

    Google Scholar 

  • McLaughlin PA (1983) Internal anatomy. In: Mantel LH (ed) The biology of crustacea, vol 5. Academic Press, London, pp 1–52

    Google Scholar 

  • McMahon BR (1981) Oxygen uptake and acid-base balance during activity in decapod crustaceans. In: Herreid CF II, Fourtner CR (eds) Locomotion and energetics in arthropods. Plenum Press, New York, pp 299–335

    Google Scholar 

  • McMahon BR, Burggren WW (1988) Respiration. In: Burggren WW, McMahon BR (eds) Biology of the land crabs. Cambridge University Press, New York, pp 249–297

    Google Scholar 

  • McMahon BR, Hassall CD (1979) Ventilation and oxygen transport in resting and active crayfish acclimated to cool temperature. Physiologist 22(4):85

    Google Scholar 

  • McMahon BR, Wilkens JL (1983) Ventilation, perfusion, and oxygen uptake. In: Mantel LH (ed) The biology of crustacea, vol 5. Academic Press, London, pp 289–372

    Google Scholar 

  • McMahon BR, Wilkes PRH (1983) Emergence responses and aerial ventilation in normoxic and hypoxic crayfish Orconectes rusticus. Physiol Zool 56:133–141

    Google Scholar 

  • McMahon BR, Burggren WW, Wilkens JL (1974) Respiratory responses to long-term hypoxia stress in the crayfish Orconectes virilis. J Exp Biol 60:195–206

    Google Scholar 

  • McWhinnie MA (1962) Gastrolith growth and calcium shifts in the freshwater crayfish Orconectes virilis. Comp Biochem Physiol 7:1–14

    PubMed  CAS  Google Scholar 

  • Moody Jr WJ (1980) Appearance of calcium action potentials in crayfish slow muscle fibres under conditions of low intracellular pH. J Physiol (Lond) 302:335–346

    Google Scholar 

  • Moody Jr WJ (1981) The ionic mechanism of intracellular pH regulation in crayfish neurones. J Physiol (Lond) 316:293–308

    Google Scholar 

  • Morgan DO, McMahon BR (1982) Acid tolerance and effects of sublethal acid exposure on ionoregulation and acid-base status in two crayfish Procambarus clarki and Orconectes rusticus. J Exp Biol 97:241–252

    CAS  Google Scholar 

  • Morris S, Tyler-Jones R, Taylor EW (1986a) The regulation of haemocyanin oxygen affinity during emersion of the crayfish Austropotamobius pallipes. I. An in vitro investigation of the interactive effects of calcium and l-lactate on oxygen affinity. J Exp Biol 121:315–326

    CAS  Google Scholar 

  • Morris S, Tyler-Jones R, Bridges CR, Taylor EW (1986b) The regulation of haemocyanin oxygen affinity during emersion of the crayfish Austropotamobius pallipes. II. An investigation of in vivo changes in oxygen affinity. J Exp Biol 121:327–337

    CAS  Google Scholar 

  • Morris S, Bridges CR, Grieshaber MK (1987) The regulation of haemocyanin oxygen affinity during emersion of the crayfish Austropotamobius pallipes. III. The dependence of Ca2+-haemocyanin binding on the concentration of l-lactate. J Exp Biol 133:339–352

    CAS  Google Scholar 

  • Morris S, Greenaway P, McMahon BR (1988) Oxygen and carbon dioxide transport by the haemocyanin of an amphibious crab, Holthuisana transversa. J Comp Physiol 157:873–882

    Google Scholar 

  • Moshiri GA, Goldman CR, Godshalk GL, Mull DR (1970) The effect of variations in oxygen tension on certain aspects of respiratory metabolism in Pacifastacus leniusculus (Dana) (Crustacea: Decapoda). Physiol Zool 43:23–29

    Google Scholar 

  • Muncy RJ, Oliver AD (1963) Toxicity of ten insecticides to the red crawfish Procambarus clarki (Girard). Trans Am Fish Soc 92:428–431

    CAS  Google Scholar 

  • Mykles DL (1980) The mechanism of fluid absorption at ecdysis in the American lobster, Homarus americanus. J Exp Biol 84:89–101

    Google Scholar 

  • Ogura K (1959) Midgut gland cells accumulating iron or copper in the crayfish Procambarus clarkii. Ann Zool Jpn 32:133–142

    Google Scholar 

  • Ortmann AE (1902) The geographical distribution of freshwater decapods and its bearing upon ancient geography. Proc Am Philos Soc 41:267–400

    Google Scholar 

  • Parry G (1957) Osmoregulation in some fresh water prawns. J Exp Biol 34:417–423

    CAS  Google Scholar 

  • Parry G, Potts WTW (1965) Sodium balance in the fresh water prawn Palaemonetes antennarius. J Exp Biol 42:415–421

    CAS  Google Scholar 

  • Pennak RW (1989) Fresh-water invertebrates of the United States. Wiley, New York, 628pp

    Google Scholar 

  • Peterson DR, Loizzi RF (1974) Ultrastructure of the crayfish kidney coelomosac, labyrinth, nephridial canal. J Morphol 142:241–263

    PubMed  CAS  Google Scholar 

  • Rainbow PS (1988) The significance of trace metal concentrations in decapods. In: Fincham AA, Rainbow PS (eds) Aspects of decapod crustacean biology. Clarendon Press, Oxford, pp 291–313

    Google Scholar 

  • Riegel JA (1963) Micropuncture studies of chloride concentration and osmotic pressure in the crayfish antennal gland. J Exp Biol 40:487–492

    PubMed  CAS  Google Scholar 

  • Riegel JA (1968) Analysis of the distribution of sodium, potassium and osmotic pressure in the urine of crayfishes. J Exp Biol 48:587–596

    PubMed  CAS  Google Scholar 

  • Riegel JA (1972) Comparative physiology of renal excretion. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Rodeau JL (1982) L’état acid-base intracellulaire: analyse Théorique appliquée à l’érythrocyte des Mammifères et étude expérimentale des cellules nerveuses et musculaires des Crustacés. Thèse Etat Sciences, L’université Louis Pasteur de Strasbourg

    Google Scholar 

  • Roer R, Dillaman R (1984) The structure and calcification of the crustacean cuticle. Am Zool 24:893–909

    CAS  Google Scholar 

  • Rutledge PS (1981) Effects of temperature acclimation on crayfish haemocyanin oxygen binding. Am J Physiol 240:R93-R98

    PubMed  CAS  Google Scholar 

  • Rutledge PS, Pritchard AW (1981) Scope for activity in the crayfish Pacifastacus leniusculus. Am J Physiol 240:R87-R92

    PubMed  CAS  Google Scholar 

  • Schram FR (1982) The fossil record and evolution of Crustacea. In: Abele LG (ed) The biology of Crustacea; systematics, the fossil record and biogeography, vol 1. Academic Press, New York, pp 93–147

    Google Scholar 

  • Shaw J (1959a) Salt and water balance in the East African fresh-water crab, Potamon niloticus (M. Edw.). J Exp Biol 36:157–176

    CAS  Google Scholar 

  • Shaw J (1959b) The absorption of sodium ions by the crayfish, Astacus pallipes Lereboullet. I. The effect of external and internal sodium concentration. J Exp Biol 36:126–144

    CAS  Google Scholar 

  • Shaw J (1960a) The absorption of sodium ions by the crayfish Astacus pallipes. II. The effect of the external anion. J Exp Biol 37:534–547

    CAS  Google Scholar 

  • Shaw J (1960b) The absorption of sodium ions by the crayfish Astacus pallipes. III. The effect of other cations in the external solution. J Exp Biol 37:557–572

    CAS  Google Scholar 

  • Shaw J (1961) Sodium balance in Eriocheir sinensis (M. Edw.). The adaptation of the Crustacea to fresh water. J Exp Biol 38:153–162

    CAS  Google Scholar 

  • Shaw J (1964) The control of salt balance in the Crustacea. Symp Soc Exp Biol 18:237–256

    PubMed  CAS  Google Scholar 

  • Shetlar RE, Towle DW (1989) Electrogenic sodium-proton exchange in membrane vesicles from crab (Carcinus maenas) gill. Am J Physiol 257:R924-R933

    PubMed  CAS  Google Scholar 

  • Short TM, Haswell MS (1979) Ionic and osmotic adjustments of the crayfish Orconectes immunis in response to dilute external concentration of sodium sulfate and choline chloride. Am Zool 19:906

    Google Scholar 

  • Simkiss K, Wilbur KM (1989) Biomineralization. Academic Press, San Diego, pp 205–289

    Google Scholar 

  • Sinha NP, Dejours P (1980) Ventilation and blood acid-base balance of the crayfish as functions of water oxygenation (40–1500 Torr). Comp Biochem Physiol A 65:427–432

    Google Scholar 

  • Sparkes S, Greenaway P (1984) The haemolymph as a storage site for cuticular ions during premoult in the freshwater/land crab Holthuisana transversa. J Exp Biol 113:43–54

    CAS  Google Scholar 

  • Sutcliffe DW (1975) Sodium uptake and loss in Crangonyx pseudogracilis (Amphipoda) and some other crustaceans. Comp Biochem Physiol A 52:255–257

    PubMed  CAS  Google Scholar 

  • Swain R, Marker PF, Richardson AMM (1987) Respiratory responses to hypoxia in stream-dwelling (Astacopsis franklinii) and burrowing (Parastacoides tasmanicus) parastacid crayfish. Comp Biochem Physiol A 87:813–817

    Google Scholar 

  • Swain R, Marker PF, Richardson AMM (1988) Comparison of the gill morphology and branchial chambers in two fresh-water crayfishes from Tasmania: Astacopsis franklinii and Parastacoides tasmanicus. J Crustacean Biol 8:355–363

    Google Scholar 

  • Taylor EW (1981) Some effects of temperature on respiration in decapodan crustaceans. J Therm Biol 6:239–248

    Google Scholar 

  • Taylor EW (1982) Control and co-ordination of ventilation and circulation in crustaceans: responses to hypoxia and exercise. J Exp Biol 100:289–319

    Google Scholar 

  • Taylor EW, Wheatly MG (1980) Ventilation, heart rate and respiratory gas exchange in the crayfish Austropotamobius pallipes (Lereboullet) submerged in normoxic water and following 3 h exposure in air at 15°C. J Comp Physiol 138:67–78

    Google Scholar 

  • Taylor EW, Wheatly MG (1981) The effect of long-term aerial exposure on heart rate, ventilation, respiratory gas exchange and acid-base status in the crayfish Austropotamobius pallipes. J Exp Biol 92:109–124

    Google Scholar 

  • Taylor EW, Tyler-Jones R, Wheatly MG (1987) The effects of aerial exposure on the distribution of body water and ions in the freshwater crayfish Austropotamobius pallipes (Lereboullet). J Exp Biol 128:307–322

    Google Scholar 

  • Taylor HH, Greenaway P (1979) The structure of the gills and lungs of the arid-zone crab, Holthuisana (Austrothelphusa) transversa (Martens) (Sundathelphusidae: Brachyura) including observations on arterial vessels within the gills. J Zool (Lond) 189:359–384

    Google Scholar 

  • Taylor HH, Greenaway P (1984) The role of the gills and branchiostegites in gas exchange in a bimodally breathing crab, Holthuisana transversa: evidence for a facultative change in the distribution of the respiratory circulation. J Exp Biol 111:103–122

    Google Scholar 

  • Taylor HH, Taylor, EW (1986) Observations of valve-like structures and evidence for rectification of flow within the gill lamellae of the crab Carcinus maenas (Crustacea, Decapoda). Zoomorphology 106:1–11

    Google Scholar 

  • Travis DF (1960) The deposition of skeletal structures in the Crustacea. I. The histology of the gastrolith in the crayfish, Orconectes (Cambarus) virilis Hagen-Decapoda. Biol Bull 118:137–149

    Google Scholar 

  • Travis DF (1963) Structural features of mineralization from tissues to macromolecular levels of organization in the decapod crustacea. Ann N Y Acad Sci 109:177–245

    PubMed  CAS  Google Scholar 

  • Truchot JP (1983) Regulation of acid-base balance. In: Mantel LH (ed) The biology of crustacea, vol 5. Academic Press, London, pp 431–457

    Google Scholar 

  • Truchot JP (1987) Comparative aspects of extracellular acid-base balance. Springer, Berlin Heidelberg New York, 248pp

    Google Scholar 

  • Tyler-Jones R, Taylor EW (1986) Urine flow and the role of the antennal glands in water balance during aerial exposure in the crayfish Austropotamobius pallipes (Lereboullet). J Comp Physiol B 156:529–535

    Google Scholar 

  • Tyler-Jones R, Taylor EW (1988) Analysis of haemolymph and muscle acid-base status during aerial exposure in the crayfish Austropotamobius pallipes. J Exp Biol 134:409–422

    Google Scholar 

  • Vernberg FJ (1983) Respiratory adaptations. In: Vernberg FJ, Vernberg WB (eds) The biology of crustacea, vol 8. Academic Press, New York, pp 1–42

    Google Scholar 

  • Walsh PJ, Milligan CL (1989) Coordination of metabolic and intracellular acid-base status: ionic regulation and metabolic consequences. Can J Zool 67:2994–3004

    CAS  Google Scholar 

  • Wheatly MG (1985a) Free amino acid and inorganic ion regulation in the muscle and haemolymph of the blue crab Callinectes sapidus (Rathbun) in relation to the molting cycle. J Crustacean Biol 5:223–233

    CAS  Google Scholar 

  • Wheatly MG (1985b) The role of the antennal gland in ion and acid-base regulation during hyposaline exposure of the Dungeness crab Cancer magister (Dana). J Comp Physiol B 155:445–454

    Google Scholar 

  • Wheatly MG (1989) Physiological responses of the crayfish Pacifastacus leniusculus (Dana) to environmental hyperoxia. I. Extracellular acid-base and electrolyte status and transbranchial exchange. J Exp Biol 143:33–51

    Google Scholar 

  • Wheatly MG (1990) Postmolt electrolyte regulation in crayfish: Ca budget, hemolymph ions and tissue Ca ATPase. Am Zool 30:63A

    Google Scholar 

  • Wheatly MG (1993) An overview of electrolyte regulation in the freshwater crayfish throughout the molting cycle. In: Romaire RP (ed) Freshwater crayfish, vol 8. (in press)

    Google Scholar 

  • Wheatly MG, Gannon AT (1993) The effect of external electrolytes on postmolt calcification in the freshwater crayfish Procambarus clarkii (Girard). In: Holdich DM (ed) Freshwater crayfish, vol 9. (in press)

    Google Scholar 

  • Wheatly MG, Henry RP (1987) Branchial and antennal gland Na+/K+-dependent ATPase and carbonic anhydrase activity during salinity acclimation of the euryhaline crayfish Pacifastacus leniusculus. J Exp Biol 133:73–86

    CAS  Google Scholar 

  • Wheatly MG, Ignaszewski LA (1990) Electrolyte and gas exchange during the molting cycle of a freshwater crayfish. J Exp Biol 151:469–483

    Google Scholar 

  • Wheatly MG, Taylor EW (1981) The effect of progressive hypoxia on heart rate, ventilation, respiratory gas exchange and acid-base status in the crayfish Austropotamobius pallipes. J Exp Biol 92:125–141

    Google Scholar 

  • Wheatly MG, Toop T (1989) Physiological responses of the crayfish Pacifastacus leniusculus (Dana) to environmental hyperoxia II. The role of the antennal gland. J Exp Biol 143:53–70

    Google Scholar 

  • Wheatly MG, Toop T, Morrison RJ, Yow LC (1991) Physiological responses of the crayfish Pacifastacus leniusculus (Dana) to environmental hyperoxia. III. Intracellular acid-base balance. Physiol Zool 64:323–343

    Google Scholar 

  • Wilkes PRH, McMahon BR (1982a) Effect of maintained hypoxic exposure on the crayfish Orconectes rusticus. I. Ventilatory, acid-base and cardiovascular adjustment. J Exp Biol 98:119–137

    CAS  Google Scholar 

  • Wilkes PRH, McMahon BR (1982b) Effect of maintained hypoxic exposure on the crayfish Orconectes rusticus. II. Modulation of haemocyanin oxygen affinity. J Exp Biol 98:139–149

    CAS  Google Scholar 

  • Willig A, Keller R (1973) Molting hormone content, cuticle growth and gastrolith growth in the molt cycle of the crayfish Orconectes limosus. J Comp Physiol 86: 377–388

    CAS  Google Scholar 

  • Wood CM, Boutilier RG (1985) Osmoregulation, ionic exchange, blood chemistry, and nitrogenous waste excretion in the land crab Cardisoma carnifex: a field and laboratory study. Biol Bull 169:267–290

    Google Scholar 

  • Wood CM, Rogano MS (1986) Physiological responses to acid stress in crayfish (Orconectes): haemolymph ions, acid-base status, and exchanges with the environment. Can J Fish Aquat Sci 43:1017–1026

    Google Scholar 

  • Zanotto FP, Wheatly MG (1990) Postmolt calcification in crayfish as a function of ambient pH in normal and decarbonated fresh water. Physiologist 33(4):A37

    Google Scholar 

  • Zanotto FP, Wheatly MG (1993a) The effect of pH on postmolt calcification and ion regulation in the freshwater crayfish (Procambarus clarkii). In: Romaire RP (ed) Freshwater crayfish, vol 8. (in press)

    Google Scholar 

  • Zanotto FP, Wheatly MG (1993b) The effect of ambient pH on electrolyte regulation during postmoult in freshwater crayfish Procambarus clarkii. J Exp Biol (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wheatly, M. (1993). Physiological Adaptations in Decapodan Crustaceans for Life in Fresh Water. In: Advances in Comparative and Environmental Physiology. Advances in Comparative and Environmental Physiology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77528-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77528-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77530-7

  • Online ISBN: 978-3-642-77528-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics