Advertisement

Structure

  • M. Urban
  • J. Synek
Part of the IGCP-Project 233 book series (IGCP 233)

Abstract

The Moldanubian Zone (MZ) was considered for many decades as an old nucleus (median mass) of the Bohemian Massif consolidated during the Cadomian or older orogenies, and surrounded by mobile Variscan belts (Stille 1951; Máška and Zoubek 1961; Zoubek et al. 1988; Chaloupský 1989). However, numrous investigations carried out in different parts of the MZ in Czechoslovakia, Austria, and Germany over the past 20 years have confirmed the early suggestions by Suess (1912, 1926), Kossmat (1927), and Kober (1938), who first interpreted the structural evolution of the MZ in terms of Variscan horizontal tectonics. There is a growing body of evidence indicating that the Moldanubian segment of the Bohemian Massif represents a mosaic of tectonic units with a distinct tectonometamorphic history which were finally assembled in the course of the Upper Paleozoic collision of Laurasia and Gondwana.

Keywords

Shear Zone Contrib Mineral Petrol Bohemian Massif Variscan Belt Moldanubian Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aftalion M, Bowes DR, Vrána S (1989) Early Carboniferous U-Pb zircon age for garnetiferous, perpòtassic granulites, Blanský les Massif, Czechoslovakia. Neues Jahrb Mineral Monatsh 4: 145–152Google Scholar
  2. Arnold A, Scharbert HG (1973) Rb-Sr Altersbestimmungen an Granuliten der südlichen Böhmischen Masse in Österreich. Schweiz Mineral Petrogr Mitt 53: 61–78Google Scholar
  3. Arthaud F, Matte Ph (1977) Late Paleozoic strike-slip faulting in southern Europe and northern Africa: result of a right lateral shear zone between the Appalachians and the Urals. Geol Soc Am Bull 88: 1305–1320CrossRefGoogle Scholar
  4. Bachmann GH, Müller M, Weggen K (1987) Evolution of the Molasse Basin (Germany, Switzerland). Tectonophysics 137: 61–78CrossRefGoogle Scholar
  5. Beard BL, Medaris LG Jr, Johnson CM, Brueckner HK, Mísař Z (1992) Petrogenesis of Variscan high-temperature Group A eclogites from the Moldanubian Zone of the Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 111: 468–483CrossRefGoogle Scholar
  6. Becker H, Altherr R (1991) P-T evolution of granulites, garnet pyroxenites and garnet-bearing peridotites in the Moldanubian Gföfl unit in Lower Austria. Geol Worksh Moravian Windows, Moravský Krumlov, Prague, Abstr, p 34Google Scholar
  7. Behr HJ, Engel W, Franke W, Giese P, Weber K (1984) The Variscan belt in Central Europe: main structures, geodynamic implications, open questions. Tectonophysics 109: 15–40CrossRefGoogle Scholar
  8. Beneš K (1964) Analýza vnitřní stavby moldanubicko-assyntské hraniční oblasti při sv. okraji moldanubického jádra. Rozpr Česk Akad Věd 74(2): 1–80Google Scholar
  9. Blümel P (1983) The western margin of the Bohemian massif in Bavaria. Fortschr Mineral 61: 171–195Google Scholar
  10. Blümel P (1984) Mitteldruck-und Niederdruck-metamorphose in den außeralpinen Varisziden Mitteleuropas. Fortschr Mineral 62 (Beih 1): 28–29Google Scholar
  11. Brandmayr M, Dallmeyer RD, Handler R, Wallbrecher E (1990) Age and kinematics of shear zones in the southern Bohemian Massif: evidence from the Rodl-Shear Zone. Proc IGCP 233 Conf Paleozoic Orogens in Central Europe, August–September 1990, Göttingen-GiessenGoogle Scholar
  12. Carswell DA (1991) Variscan high P-T metamorphism and uplift history in the Moldanubian Zone of the Bohemian Massif in Lower Austria. Eur J Mineral 3: 323–342Google Scholar
  13. Carswell DA, Jamtveit B (1990) Variscan Sm-Nd ages for the high pressure metamorphism in the Moldanubian Zone of the Bohemian Massif, Lower Austria. Neues Jahrb Mineral Abh 162: 69–78Google Scholar
  14. Chaloupský J (1989) Major tectonostratigraphic units of the Bohemian Massif. Geol Soc Am Spec Pap 230: 101–114CrossRefGoogle Scholar
  15. Dallmeyer RD, Neubauer F, Höck V (1990) 40Ar/39Ar mineral age controls on the chronology of late Paleozoic tectonothermal activity in the southeastern Bohemian Massif, Austria (Moldanubian and Moravo-silesian zones). In: Franke W (ed) Bohemian Massif. Field guide, Conf IGCP 233, Paleozoic orogens in central Europe, Göttingen-Giessen 1990, pp 87-96Google Scholar
  16. Dobretsov NL, Mísař Z, Popov EV (1984) The P-T conditions of equilibrium for some; pyrope peridotites and their country rocks in the Moldanubian area at Mohelno (Eastern Moravia, Czechoslovakia). Mineral Slovaca 16: 87–95Google Scholar
  17. Fiala J, Matějovská O, Vaňková V (1987) Moldanubian granulites and related rocks: petrology, geochemistry and radioactivity. Rozpr Česk Akad Věd 97(1): 102Google Scholar
  18. Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Pap 230: 67–90CrossRefGoogle Scholar
  19. Frank W, Scharbert S, Thöni M, Popp F, Hammer S (1991) Isotopengeologische Neuergebnisse zur Entwicklungsgeschichte der Böhmischen Masse. Proterozoische Gesteinsserien und variszische Hauptorogenese. Österr Beitr Meteorol Geophys 3: 185–228Google Scholar
  20. Fritz H (1991) Structures and kinematics along the Moravian-Moldanubian boundary: preliminary results. Österr Beitr Meteorol Geophys 3: 77–96Google Scholar
  21. Fuchs G (1976) Zur Entwicklung der Böhmischen Masse. Jahrb Geol Bundesanst 119: 1–43Google Scholar
  22. Fuchs G (1986) Zur Diskussion um den Deckenbau der Böhmischen Masse. Jahrb Geol Bundesanst 129: 41–49Google Scholar
  23. Fuchs G (1990) The Moldanubicum — an old nucleus in the Hercynian mountain ranges of Central Europe. In: Minaříková D, Lobitzer H (eds) Thirty years of geological cooperation between Austria and Czechoslovakia, Federal Geological Survey, Vienna, Geol Surv, Prague, pp 256-262Google Scholar
  24. Fuchs G, Matura A (1976) Die Geologie des Kristallins der südlichen Böhmischen Masse. Jahrb Geol Bundesanst 119: 1–43Google Scholar
  25. Fuchs G, Scharbert HG (1979) Kleinere Granulitvor-kommen im niederösterreichischen Moldanubikum und ihre Bedeutung für die Granulitgenese. Verh Geol Bundesanst 1979: 29–49Google Scholar
  26. Gebauer D, Grünenfelder M (1973) Vergleichende U/Pb-und Rb/Sr-Altersbestimmungen im bayer-ischen Teil des Moldanubikums. Fortschr Mineral Beih 50 (3)Google Scholar
  27. Gebauer D, Grünenfelder M (1982) Geological development of the Hercynian Belt of Europe based on age and origin of the high-grade mafic and ultramafic rocks. Abstr 5th Int Conf on geochronology and isotope geology, JapanGoogle Scholar
  28. Gebauer D, Williams IS, Compston W, Grünenfelder M (1989) The development of the Central European continental crust since the Early Archean based on conventional and ion-microprobe dating of up to 3.84-b. y.-old detrital zircons. Tectonophysics 157: 81–96CrossRefGoogle Scholar
  29. Gorokhov IM, Melnikov NN, Varsavskaja ES, Kutjavin EP (1983) Rb-Sr dating of magmatic and metamorphic events in the eastern part of the Bohemian Massif. Čas Mineral Geol 28: 349–361Google Scholar
  30. Grauert B, Hänny R, Soptrajanova G (1974) Geochronology of a polymetamorphic and anatectic gneiss region: the Moldanubicum of the area Lam-Deggendorf; Eastern Bavaria, Germany. Contrib Mineral Petrol 45: 37–63CrossRefGoogle Scholar
  31. Jenček V (1984) Vysvětlivky k základní geologické mapě ČSSR 1:25000, 33-223 Vranov. Ústřed Ústav Geol Praha, 57 ppGoogle Scholar
  32. Johan V, Autran A, Ledru P, Lardeaux JM, Melka R (1990) Discovery of relics of a high-pressure metamorphism at the base of the Moldanubian nappe complex. Proc Conf IGCP 233 Paleozoic orogens in central Europe, August–September 1990, Göttingen-GiessenGoogle Scholar
  33. Kadounová Z, Rajlich P, Synek J, Šarbach M, Kříbek B (1989) Shear kinematics on the contact between granulites and the Varied Group; Southern Bohemia, Moldanubian. Věstn Ústřed Ústavu Geol 64: 321–334Google Scholar
  34. Klečka M, Rajlich P, Melka R (1986) Ductile shear zones and origin of orthogneisses in the thrust sheet of Choustník. Acta Montana 72: 36–62Google Scholar
  35. Kober L (1938) Der geologische Aufbau Österreichs. Springer, Wien Berlin HeidelbergCrossRefGoogle Scholar
  36. Köhler H, Müller-Sohnius D (1976) Ergänzende Rb-Sr-Altersbestimmungen an Mineral-und Gesamtgesteinsproben des Leuchtenberger und des Flossenbürger Granits (NE-Bayern). Neues Jahrb Mineral Monatsh: 354-365Google Scholar
  37. Köhler H, Müller-Sohnius D (1985) Rb-Sr Altersbestimmung und Sr-Isotopensystematik an Gesteinen des Regensburger Waldes (Moldanubikum NE Bayern), Teil 1: Par-agneisanatexite. Neues Jahrb Mineral Abh 151: 1–28Google Scholar
  38. Konzalová M (1980) Zu der mikro-paläontologischen Erforschung graphitischer Gesteine in Südteil der Böhmischen Masse. Věstn Ústřed Ústavu Geol 55: 233–236Google Scholar
  39. Kossmat F (1927) Gliederung des varistischen Gebirgsbaues. Abh Sächs Geol Landesamtes: 1-39Google Scholar
  40. Koutek J (1933) Geologie posázavského krystalinika I. Věstn Stát Geol Ústavu 9: 319–333Google Scholar
  41. Kreuzer H, Seidel E, Schüssler U, Okrusch M, Lenz KL, Raschka H (1989) K-Ar geo-chronology of different tectonic units at the northwestern margin of the Bohemian Massif. Tectonophysics 154: 149–178CrossRefGoogle Scholar
  42. Kröner A, Wendt I, Liew TC, Compston W, Todt W, Fiala J, Vaňková V, Van ěk J (1988) U-Pb zircon and Sm-Nd model ages of high-grade Moldanubian metasediments, Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 99: 257–266CrossRefGoogle Scholar
  43. Lardeaux JM, Johan V, Autran A, Ledru P (1991) Talcphengite-kyanite bearing meta-pelites: high-pressure metamorphism in the Moravian Zone and its tectonic significance. Abstr Geol Worksh Moravian Windows, Moravský Krumlov, PragueGoogle Scholar
  44. Lorenz V, Nicholls IA (1984) Plate and intraplate processes of Hercynian Europe during the Late Paleozoic. Tectonophysics 107: 25–56CrossRefGoogle Scholar
  45. Malkovský M (1987) The Mesozoic and Tertiary basins of the Bohemian Massif and their evolution. Tectonophysics 137: 31–42CrossRefGoogle Scholar
  46. Máška M, Zoubek V (1961) Area of the Variscan intramontane block. The region of the Moldanubian elevation. In: Buday T, Kodymsan D, Mahel M, Máška M, Matěska A et al. (eds) Tectonic development of Czechoslovakia. Nakladatelství Česk Akad Věd Praha, pp 25-51Google Scholar
  47. Matte Ph (1986) Tectonics and plate tec-tonics model for the Variscan belt of Europe. Tectonophysics 126: 329–374CrossRefGoogle Scholar
  48. Matte Ph, Maluski H, Echtler H (1985) Cisaillements ductiles varisques vers l’Est-Sud Est dans les nappes du Waldviertel (Sud Est du Massif de Bohème, Autriche). Données microtectoniques et radiométriques 39-Ar/ 40-Ar. C R Acad Sci Paris 301: 721–724Google Scholar
  49. Matte Ph, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. In: Matte Ph (ed) Terranes in the Variscan Belt of Central Europe and Circum-Atlantic Paleozoic Orogens. Tectonophysics 177: 151–170CrossRefGoogle Scholar
  50. Matura A (1976) Hypothesen zum Bau und zur geologischen Geschichte des kristallinen Grundgebirges von Südwestmôhren und des niederösterreichischen Waldviertels. Jahrb Geol Bundesanst 119: 63–74Google Scholar
  51. Medaris LG Jr, Carswell DA (1990) The petr-ogenesis of Mg-Cr peridotites in European metamorphic belts. In: Carswell DA (ed) Eclogite facies rocks. Blackie, New York, pp 260–290CrossRefGoogle Scholar
  52. Melka R, Schulmann K, Schulmannová B, Hrouda F, Lobkowicz M, Figar Š (1994) The evolution of perpendicular linear fabrics during ductile thrusting in synkinematic granite (central Moravia, Bohemian Massif). J Struct Geol (in press)Google Scholar
  53. Mísař Z, Dudek A, Havlena V, Weiss Z (1983) Geologie ČSSR I. Český masív. Státní Pedagogické Nakladatelství, PrahaGoogle Scholar
  54. Neubauer F (1991) Kinematics of the Moldanubian Zone in the southern Bohemian Massif: preliminary results from the Danube section. Österr Beitr Meteorol Geophys 3: 57–76Google Scholar
  55. O’Brien PJ, Carswell DA, Gebauer D (1990) Eclogite formation and distribution in the Central European Variscides. In: Carswell DA (ed) Eclogite faciès rocks. Blackie, New York, pp 204–220CrossRefGoogle Scholar
  56. Pacltová B (1980) Further micropaleontological data for the Paleozoic age of Moldanubian carbonate rocks. Čas Mineral Geol 25: 275–279Google Scholar
  57. Pašek J, Urban M (1991) The tectonic evolution of the Plzeň Basin (Upper Carboniferous, West Bohemia): a review and reinterpretation. Folia Musei Rerum Naturalium Bohemiae Occidentalis, Geologica 32: 1–56Google Scholar
  58. Petrakakis K (1986) Metamorphism of high grade gneisses from the Moldanubian zone, Austria, with particular reference to the garnets. J Metamorph Geol 4: 323–344CrossRefGoogle Scholar
  59. Petrakakis K, Richter W (1991) Metamorphose im niederösterreichischen Moldanubikum — eine Übersicht. Arbeitstag Geol Bundesanst 1991: 13–20Google Scholar
  60. Pflug HD, Reitz E (1987) Palynology in metamorphic rocks: Indications of early land plants. Naturwissenschaften 74: 386–387CrossRefGoogle Scholar
  61. Quadt A (1990) U-Pb-zircon and Sm-Nd analyses on metabasites from the KTB pilot bore hole. KTB-Rep 90-4: 545Google Scholar
  62. Quadt A, Gebauer D (1988) Sm/Nd-, U-Pb-and Rb-Sr dating of high-pressure ultramafic to felsic rocks from the Moldanubian area of NE Bavaria (FRG) and the Saxonian granulite massif (GDR). Abstr Conf Bohemian Massif, September 1988, Prague, p 71Google Scholar
  63. Rajlich P (1987) Variszische duktile Tektonik im Böhmischen Massiv. Geol Rdsch 76: 755–786CrossRefGoogle Scholar
  64. Rajlich P (1988) Variscan shearing kinematics in the Bohemian Massif: Moldanubian and Moravo-Silesian junction. Acta Univ Carolinae Geol 4: 387–400Google Scholar
  65. Rajlich P, Synek J (1987) A cross section through the Moldanubian of the Bohemian Massif and the structural development in its ductile domains. Neues Jahrb Geol Paläontol Monatsh 11: 689–698Google Scholar
  66. Rajlich P, Synek J, Šarbach M, Schulmann K (1986) Hercynian-thrust related shear zones and deformation of the Varied Group on the contact of granulites (Southern Moldanubian, Bohemian Massif). Geol Rdsch 75: 665–683CrossRefGoogle Scholar
  67. Rajlich P, Schulmann K, Synek J (1988) Strain analysis of conglomerates from the Central Bohemian shear zone. Krystalinikum 19: 119–134Google Scholar
  68. Reston T, Meissner R (1989) The three-dimensional structure of the Oberpfalz—an alternative inter-pretation of the DEKORP-KTB data. Tectonophysics 157: 1–11CrossRefGoogle Scholar
  69. Scharbert HG, Kurat G (1974) Distribution of some elements between coexisting ferromagnesian minerals in Moldanubian granulite facies rocks, Lower Austria, Austria. Tschermaks Mineral Petrogr Mitt TMPM 21: 110–134CrossRefGoogle Scholar
  70. Scharbert S (1987a) Rb-Sr Untersuchungen granitoider Gesteine des Moldanubikums in Österreich. Mitt Österr mineral Ges 132: 21–347Google Scholar
  71. Scharbert S (1987b) Rb-Sr Analysen des Tonalits und Granits von der Lokalität Křižanovice (Železné hory). Čas Mineral Geol 32: 411–412Google Scholar
  72. Scharbert S, Veselá M (1990) Rb-Sr systematics of intrusive rocks from the Moldanubicum around Jihlava. In: Minaříková D, Lobitzer H (eds) Thirty years of geological cooperation between Austria and Czechoslovakia. Fed Geol Surv Vienna Geol Surv Prague, pp 262-272Google Scholar
  73. Schröder B (1987) Inversion tectonics along the western margin of the Bohemian Massif. Tectonophysics 137: 93–100CrossRefGoogle Scholar
  74. Schulmann K, Ledru P, Autran A, Melka R, Lardeaux JM, Urban M, Lobkowitz M (1991) Evolution of nappes in the eastern margin of the Bohemian Massif: a kinematic interpretation. Geol Rdsch 80: 73–92CrossRefGoogle Scholar
  75. Stein E (1988) Die strukturgeologische Entwicklung im Übergangsbereich Saxothuringikum/Moldanubikum in NE Bayern. Geol Bavarica 92: 5–131Google Scholar
  76. Stettner G (1988) The Moldanubian region in the Bavarian segment of the Bohemian Massif (Federal Republic of Germany). In: Zoubek V, Cogné J, Kozhoukharov D, Krautner HG (eds) Precambrian in younger fold belts: European Variscides, the Carpathians and Balkans. Wiley, New York, pp 252–267Google Scholar
  77. Stille H (1951) Das mitteleuropäische variszische Grundgebirge im Bilde des gesamteuropäischem. Geol Jahrb Beih 2: 1–138Google Scholar
  78. Suess FE (1912) Die moravischen Fenster und ihre Beziehung zum Grundgebirge des Hohen Gesenkes. Österr Akad Wiss Denkschr 88: 541–631Google Scholar
  79. Suess FE (1926) Intrusionstektonik und Wandertektonik im variszischen Grundgebirge. Bornträger, BerlinGoogle Scholar
  80. Synek J (1991) Formation of sheath folds and reorientation of the stretching lineation in the western part of the Kutná Hora Crystalline Unit. Věstn Ústřed Ústavu Geol 66: 75–84Google Scholar
  81. Teufel S (1988) Vergleichende U-Pb und Rb-Sr Altersbestimmungen and Gesteinen des Übergangbereiches Saxothuringikum/Moldanubikum, NE Bayern. Gött Arb Geol Paläontol 35: 1–87Google Scholar
  82. Thiele O (1976) Ein westvergenter kaledonischer Deckenbau im niederösterreichischen Waldviertel? Jahrb Geol Bundesanst 119: 75–81Google Scholar
  83. Thiele O (1984) Zum Deckenbau und Achsenplan des Moldanubikums der Südlichen Böhmischen Masse (Österreich). Jahrb Geol Bundesanst 126: 513–523Google Scholar
  84. Tollmann A (1982) Großräumiger variszischer Deckenbau im Moldanubikum und neue Gedanken zum Variszikum Europas. Geotekton Forsch 64: 91Google Scholar
  85. Urban M (1994) Kinematics of the Variscan thrusting in the E Moldanubicum (Bohemian Massif, Czechoslovakia): evidence from the Náměšt’ granulite massif. Tectonophysics 201 (in press)Google Scholar
  86. Urban M, Mísař Z (1989) Fold and shear structures of the southeastern Moldanubicum (Czechoslovakia). Krystalinikum 20: 111–130Google Scholar
  87. Van Breemen O, Aftalion M, Bowes DR, Dudek A, Mísař Z, Povondra P, Vrána S (1982) Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe. Trans R Soc Edinb Earth Sci 73: 89–108CrossRefGoogle Scholar
  88. Vollbrecht A, Weber K, Schmoll J (1989) Structural model for the Saxothuringian-Moldanubian suture in the Variscan basement of the Oberpfalz (Northeastern Bavaria, FRG) interpreted from geophysical data. Tectonophysics 157: 123–133CrossRefGoogle Scholar
  89. Vrána S (1979) Polyphase shear folding and thrusting in the Moldanubicum of southern Bohemia. Věstn Ústřed Ústavu Geol 54: 75–86Google Scholar
  90. Vrána S (1994) The Moldanubian Zone in southern Bohemia: polyphase evolution of imbricated crustal and upper mantle segments. Proc Conf Bohemian Massif, September 1988, Prague (in press)Google Scholar
  91. Wallbrecher E, Dallmeyer RD, Brandmayr M, Handler R, Maderbacher F, Platzer R (1991) Kinematik und Alter der Blattverschiebungszonen in der südlichen Böhmischen Masse. Arbeitstag Geol Bundesanst 1991: 35–48Google Scholar
  92. Weber K (1990) Observations on the ductile deformation path of the paragneisses of the KTB pilot hole. KTB-Rep 90-8: J1–J19Google Scholar
  93. Weber K, Duyster J (1990) Moldanubian Zone of the Waldviertel, Lower Austria. In: Franke W (ed) Bohemian Massif. Field guide, Conf IGCP 233 “Paleozoic orogens in central Europe”, Göttingen-Giessen 1990, pp 87-96Google Scholar
  94. Weber K, Vollbrecht A (1986) Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschland, KTB-Ergebnisse der Vorerkundungsarbeiten, Lokation Oberpfalz. 2. KTB-Koll, September 1986, Seeheim/OdenwaldGoogle Scholar
  95. Wendt I, Kreuzer H, Müller P, Schmidt H (1986) Gesamtgesteins-und Mineraldatierungen des Falkenberger Granits. Geol Jahrb E 34: 5–60Google Scholar
  96. Wendt I, Kröner A, Todt W, Fiala J, Rajlich P, Liew TC, Van ěk J (1988) U-Pb zircon ages and Nd whole-rock systematics for Moldanubian rocks of the Bohemian Massif, Czechoslovakia. Abstr Conf Bohemian Massif, Prague, 198Google Scholar
  97. Zoubek V, Cogné J, Kozhoukharov D, Krautner HG (1988) Precambrian in younger fold belts: European Variscides, the Carpathians and Balkans. Wiley, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • M. Urban
  • J. Synek

There are no affiliations available

Personalised recommendations