Advertisement

Metallogenesis

  • G. Tischendorf
  • H. Dill
  • H.-J. Förster
Chapter
Part of the IGCP-Project 233 book series (IGCP 233)

Abstract

The Saxothuringian Zone sensu strictu comprises a large part of the NW edge of the Bohemian Massif and a very small one of the northernmost Black Forest in the environs of Baden-Baden as well as of the Vosges (Fig. 1). Not surprisingly, the Saxothuringian Zone of the Black Forest and the Vosges is of less importance regarding metallogenesis than the area belonging to the Bohemian Massif, that bears a great many sites of mineralization, formerly operated for base metals, as well as some first-class Sn, W, Ag, and U deposits, that have only recently been shut down for economic reasons. These sites of mineralization have been the target of many studies, with a wealth of publications during the last decades, out of which only some comprehensive papers are mentioned: Chrt et al. (1966); Reh and Schröder (1974); Bernard (1980); Štemprok (1980); Dill (1985a); Legier (1985); Baumann et al. (1986); Pouba and Ilavsky (1986); Tischendorf (1986); Walther et al. (1986); Tischendorf comp. 1989; Tischendorf and Förster (1994).

Keywords

Bohemian Massif Lower Devonian Base Metal Deposit Potential Source Rock Inst Mining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumann L (1958) Tektonik und Genesis der Erzlagerstätte von Freiberg (Zentralteil). Freiberger Forschungsh C 46: 208Google Scholar
  2. Baumann L (1979) Some aspects of mineral deposit formation and the metallogeny of Central Europe. Verh Geol Bundesanst Wien 1978: 205–220Google Scholar
  3. Baumann L, Kölbel B, Kraft M et al. (1986) German Democratic Republic. In: Dunning SWF, Evans AM (eds) Mineral deposits of Europe, vol 3. Central Europe. Inst Mining and Metallurgy, London, pp 303–329Google Scholar
  4. Bernard JH (1980) Paragenetic units of the European Variscan megazone. Freiberger Forschungsh C 354: 55–117Google Scholar
  5. Bernard HJ, Skvor V (1980) The reactivation of ancient massif and metallogeny: the example of the Bohemian Massif. Econ Geol 75: 251–259CrossRefGoogle Scholar
  6. Besang C, Harre W, Kreuzer H, Lenz H, Müller P, Wendt I (1976) Radiometrische Datierung, geochemische und petrographische Untersuchungen der Fichtelgebirgsgranite. Geol Jahrb E 8: 3–71Google Scholar
  7. Bielicki KH, Tischendorf G (1991) Isotopic composition of ore leads from Central Europe. Lead isotope and Pb-Pb model age determination and their metallogenetic interpretation. Contrib Mineral Petrol 106: 440–461CrossRefGoogle Scholar
  8. Carl C, Dill H, Kreuzer H, Wendt I (1983) U-Pb dating of ores in NE Bavaria. Terra Cognita: 195-196Google Scholar
  9. Chrt J, Bolduan H, Bernstein KH et al. (1966) Die postmagmatische Mineralisation des Westteils der Böhmischen Masse. Sb Geol Věd Lg Praha 8: 113–192Google Scholar
  10. Dill H (1985a) Die Vererzung am Westrand der Böhmischen Masse. Metallogenese in einer ensialischen Orogenzone. Geol Jahrb D 73: 3–461Google Scholar
  11. Dill H (1985b) Antimoniferous mineralization from the mid-European Saxothuringian Zone: mineralogy/geology, geochemistry and ensialic origin. Geol Rdsch 74: 447–466CrossRefGoogle Scholar
  12. Dill H (1988) Geologic setting and age relationship of fluorite-barite mineralization in southern Germany with special reference to the late Paleozoic unconformity. Mineral Deposit 23: 16–23Google Scholar
  13. Dill H (1989) Metallogenetic and geodynamic evolution in the Central European Variscides — a pre-well site study for the German Continental Deep Drilling Programme. Ore Geol Rev 4: 279–304CrossRefGoogle Scholar
  14. Fluck P, Weil R, Wimmenauer W et al. (1975) Géologie des gïtes minéraux des Vosges. Mém BRGM 87: 189Google Scholar
  15. Förster HJ, Tischendorf G (1989) Reconstruction of the volatile characteristics of granitoidic magmas and hydrothermal solutions on the basis of dark micas: the Hercynian postkinematic granites and associated high-temperature mineralizations of the Erzgebirge (GDR). 1. Communication: calculation procedure and results. Chemie Erde 49: 7–20Google Scholar
  16. Förster HJ, Tischendorf G (1992) Volatile signatures of the Hercynian postkinematic granites of the Erzgebirge: implications to related tin-tungstenmolybdenum metallogenesis. Chemie Erde 52: 49–61Google Scholar
  17. Franke W (1989) Tectonostratigraphic units in the Variscan belt of central Europe. Geol Soc Am Spec Pap 230: 67–90CrossRefGoogle Scholar
  18. Gerstenberger H (1989) Autometasomatic Rb enrichments in highly evolved granites causing lowered Rb-Sr isochron intercepts. Earth Planet Sci Lett 93: 65–75CrossRefGoogle Scholar
  19. Gottesmann B, Wasternack J, Märtens S (1994) The Gottesberg tin deposit (Saxony): geological and metallogenic characteristics. In: Seitmann R, Kampf H, Möller P (eds) Metallogeny of collisional orogens. Czech Geol Surv, Prague, pp 110–115Google Scholar
  20. Harlass E, Schützel H (1965) Zur paragenetischen Stellung der Gangpechblende in den hydrothermalen Lagerstätten des westlichen Erzgebirges. Z Angew Geol 11: 569–582Google Scholar
  21. Höhndorf A, Dill H (1986) Lead isotope studies of stratabound, vein-type and unconformity-related Pb, Sb and Bi ore mineralizations from the western edge of the Bohemian Massif (F.R. Germany). Mineral Deposit 21: 329–336Google Scholar
  22. Kämpf H, Bankwitz P, Strauch G et al. (1985) Local and regional processes and zoning in a hydrothermal Late Variscan vein mineralization from the southern part of the G.D.R. Gerlands Beitr Geophys 94: 426–434Google Scholar
  23. Kuzvart M (1969) Kaolin deposits of Czechoslovakia In: Malkovsky M, Vachtl J (eds) 23th Int Geol Congr, Academica Prague 15: 47-73Google Scholar
  24. Lange G, Mühlstedt P, Freyhoff G, Schröder D (1991) Der Uranerzbergbau in Thüringen und Sachsen — ein geologisch-bergmännischer Überblick. Erzmetall 44: 162–171Google Scholar
  25. Legier C (1985) Die schichtgebundenen Mineralisationen des Erzgebirges. Freiberger Forschungsh C 401: 93Google Scholar
  26. Legier C, Pilot J, Schlichting M (1984) Blei-und Schwefelisotopenbestimmungen an schichtgebundenen Mineralisationen der Fichtelgebirgisch-Erzgebirgischen Antiklinalzone. Freiberger Forschungsh C 389: 122–150Google Scholar
  27. Lützner H (1987) Sedimentary and volcanic Rotliegendes of the Saale Depression. Excursion Guidebook. Zentralinst Phys Erde Potsdam, 197 ppGoogle Scholar
  28. Möller P, Maus H, Gundlach H (1982) Die Entwicklung von Flußspatmineralisationen im Bereich des Schwarzwaldes. Jahrb Geol Landesamt Baden-Württemberg Freiburg 24: 35–70Google Scholar
  29. Nemec D (1979) Genese der regional-metamorphen Skarne der Böhmischen Masse. Chemie Erde 38: 194–209Google Scholar
  30. Nielsen H (1978) Isotopes in nature — sulfur. In: Wedepohl KH (ed) Handb geochem 16 B: 1–40Google Scholar
  31. Pouba Z, Ilavsky J (1986) Czechoslovakia. In: Mineral deposits of Europe, vol 3. Central Europe. Inst Mining and Metallurgy London, pp 117-173Google Scholar
  32. Reh H, Schröder N (1974) Erze. In: Hoppe W, Seidel G (eds) Geologie von Thüringen. Hermann Haack, Gotha, pp 867–997Google Scholar
  33. Rösler HJ (1964) Genetische Probleme der Erze des sogenannten erweiterten Lahn-Dill-Typs. Ber Geol Ges DDR 9: 445–454Google Scholar
  34. Rösler HJ, Pilot J (1967) Die zeitliche Einstufung der sächsisch-thüringischen Ganglagerstätten mit Hilfe der K-Ar-Methode. Freiberger Forschungsh C 209: 87–98Google Scholar
  35. Seitmann R, Schilka W (1991) Metallogenetic aspects of breccia-related tin granites in the Eastern Erzgebirge. Z Geol Wiss 19: 485–490Google Scholar
  36. Štemprok M (1980) Tin and tungsten deposits of the West-Central European Variscides. In: Ridge JD (ed) Proc 5th IAGOD-Symp, Stuttgart, pp 496-512Google Scholar
  37. Thomas R, Strauch G, Bielicki KH, Haase G, Kämpf H, Klemm W (1989) Temperature-time-matter-related convection model of a granitic intrusion. In: Wand U, Strauch G (eds) Proc 5th Work Meet Isotopes in nature. Zentralinst Isotopen-und Strahlenforsch Leipzig, pp 397-409Google Scholar
  38. Tischendorf G (1986) Variscan ensialic magmatism and metallogenesis in the Ore Mountains — modelling of the process. Chemie Erde 45: 75–104Google Scholar
  39. Tischendorf G, Förster HJ (1990) Acid magmatism and related metallogenesis in the Erzgebirge. Geol J 25: 443–454CrossRefGoogle Scholar
  40. Tischendorf G, Förster HJ (1994) Hercynian granitic magmatism and related metallogenesis in the Erzgebirge: a status report. In: Gehlen Kv, Klemm DD (eds) Mineral deposits of the Engebirge/Krušné hory (Germany/Czech Republic). Monogr Ser Miner Deposit 31: 5-23Google Scholar
  41. Tischendorf G comp. (1989) Silicic magmatism and metallogenesis of the Erzgebirge. Veröff Zentralinst Phys Erde Potsdam 107: 316Google Scholar
  42. Walther HW, Emmermann KH, Fenchel W et al. (1986) Federal Republic of Germany. In: Dunning SWF, Evans AM (eds) Mineral deposits of Europe, vol 3. Central Europe. Inst Mining and Metallurgy London, pp 175-301Google Scholar
  43. Young TP (1989) Eustatically controlled ooidal ironstone deposition: facies relationships of the Ordovician open-shelf ironstones of western Europe. In: Young TP, Taylor WEG (eds) Phanerozoic ironstones. Geol Soc Spec Publ 46: 51-63Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • G. Tischendorf
  • H. Dill
  • H.-J. Förster

There are no affiliations available

Personalised recommendations