Advertisement

Supersonic Jet Spectroscopy with Supercritical Fluids

  • Chung Hang Sin
  • Steven R. Goates
  • Milton L. Lee
  • David M. Lubman

Abstract

Selectivity is one of the most important aspects in analytical chemistry. In spectroscopy, selectivity results from high spectral resolution. A molecular spectrum is usually broad due to inhomogeneous broadening and thermal population of higher vibrational and rotational states. The situation becomes even worse for larger molecules, due to closely spaced rotational states and low energy vibrational modes. These broad spectra are not suitable for compound identification.

Keywords

Supercritical Fluid Laser Induce Fluorescence Supercritical Fluid Chromatography Mach Disk Supersonic Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wehry EL, Mamantov G (1979) Anal Chem 51:643ACrossRefGoogle Scholar
  2. 2.
    D’Silva AP, Fassel VA (1984) Anal Chem 56:985ACrossRefGoogle Scholar
  3. 3.
    Heisig V, Jeffrey AM, McGlade MJ, Small GJ (1984) Science 223:289CrossRefGoogle Scholar
  4. 4.
    Levy DH (1980) Annu Ref Phys Chem 31:197CrossRefGoogle Scholar
  5. 5.
    Smalley RE, Wharton L, Levy DH (1977) Acc Chem Res 10:139CrossRefGoogle Scholar
  6. 6.
    Li L, Lubman DM (1988) Anal Chem 60:2591CrossRefGoogle Scholar
  7. 7.
    Sin CH, Pang HM, Lubman DM, Zorn J (1986) Anal Chem 58:487CrossRefGoogle Scholar
  8. 8.
    Goates SR, Barker AJ, Zakharia HS, Khoobehi B, Sheen CW (1987) Appl Spectrosc 41:1392CrossRefGoogle Scholar
  9. 9.
    Lubman DM (1987) Anal Chem 59:31ACrossRefGoogle Scholar
  10. 10.
    Hayes JM (1987) Chem Rev 87:745CrossRefGoogle Scholar
  11. 11.
    Goates SR, Sin CH (1989) Appl Spectrosc Rev 25(2):81CrossRefGoogle Scholar
  12. 12.
    Huber-Walchli P, Nibler JW (1982) J Chem Phys 76:273CrossRefGoogle Scholar
  13. 13.
    Amirav A, Even U, Jortner J (1982) Anal Chem 54:1666CrossRefGoogle Scholar
  14. 14.
    Miller RE (1982) Rev Sci Instrum 53:1719CrossRefGoogle Scholar
  15. 15.
    Abe H, Kamei S, Mikami N, Ito M (1984) Chem Phys Lett 109:217CrossRefGoogle Scholar
  16. 16.
    Stewart GM, Ensminger MD, Kulp TJ, Ruoff RS, McDonald JD (1983) J Chem Phys 79:3190CrossRefGoogle Scholar
  17. 17.
    Smith RD, Udseth HR (1984) Anal Chem 55:2266CrossRefGoogle Scholar
  18. 18.
    Pang HM, Sin CH, Lubman DM, Zorn J (1986) Anal Chem 58:1581CrossRefGoogle Scholar
  19. 19.
    Pang HM, Lubman DM (1988) Rev Sci Instrum 59:2460CrossRefGoogle Scholar
  20. 20.
    Pang HM, Sin CH, Lubman DM (1988) Spectrochim Acta Part B 43:671CrossRefGoogle Scholar
  21. 21.
    Pang HM, Lubman DM (1989) Anal Chem 61:777CrossRefGoogle Scholar
  22. 22.
    Tembreull R, Sin CH, Pang HM, Lubman DM (1985) Anal Chem 57:2911CrossRefGoogle Scholar
  23. 23.
    Pang HM, Sin CH, Lubman DM (1988) Appl Spectrosc 42:1200CrossRefGoogle Scholar
  24. 24.
    Simon JK, Sin CH, Zabriskie NA, Lee ML, Goates SR, Fields SM (1989) J MicroCol Sep 1:200CrossRefGoogle Scholar
  25. 25.
    Goates SR, Sin CH, Simons JK, Markides KE, Lee ML (1989) J MicroCol Sep 1:207CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Chung Hang Sin
  • Steven R. Goates
  • Milton L. Lee
  • David M. Lubman

There are no affiliations available

Personalised recommendations