Advertisement

The Mammalian Centromere: Centromere Separation, Kinetochore Proteins and Aneuploidy

  • B. K. Vig
  • B. Richards
  • N. Paweletz
Part of the Advances in Mutagenesis Research book series (MUTAGENESIS, volume 4)

Abstract

Centromeres (primary constrictions of chromosomes) and kinetochores (specialized protein complex anchored to the centromere) are the sites of activities crucial for chromosome migration. Defects in the centromere, e.g., premature centromere division (Fitzgerald 1989; Vig and Rattner 1989) and kinetochore aberrations, e.g., absence of kinetochores (Vig and Sternes 1991; Vig et al. 1991b) appear to be associated with the genesis of aneuploidy. A host of other factors, e.g., spindle, microtubules, centrosomes, nuclear envelope-associated proteins (see Vig and Sandberg 1987; Resnick and Vig 1989), also affect the outcome of cell division. Recently, the field of chromosome migration has seen a strong upsurge of investigations including molecular biology of the centromere/kinetochore region. The present review, however, deals primarily with the characterization and activity of this region in relation to the genesis of aneuploidy.

Keywords

Dicentric Chromosome Pericentric Heterochromatin Indian Muntjac Primary Constriction Minor Satellite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernat R, Borisy GG, Rothfield NF, Earnshaw WC (1990) Injection of anticentromere antibodies in interphase disrupts events required for chromosome movement at mitosis. J Cell Biol 111:1519–1533PubMedCrossRefGoogle Scholar
  2. Bloom KS, Amaya E, Clarke L, Hill A, Yeh E (1984) Chromatin conformation of yeast centromeres. J Cell Biol 99:1559–1568PubMedCrossRefGoogle Scholar
  3. Brinkley BR, Valdivia MM, Tousson A, Brenner SL (1984) Compound kinetochores of Indian muntjac: evolution by linear fusion of unit kinetochores. Chromosoma 91:1–11PubMedCrossRefGoogle Scholar
  4. Brinkley BR, Zinkowski RP, Mollon WL, Davis FM, Pisegna MA, Pershouse M, Rao PN (1988) Movement and segregation of kinetochores experimentally detached from mammalian chromosomes. Nature 336:251–254PubMedCrossRefGoogle Scholar
  5. Broccoli D, Paweletz N, Vig BK (1989) Sequence of centromere separation: characterization of multicentric chromosomes in a rat cell line. Chromosoma 98:13–22PubMedCrossRefGoogle Scholar
  6. Comings DE, Okada TA (1970) Whole mount electron microscopy of the centromere region of metacentric and telocentric mammalian chromosomes. Cytogenetics 9:436–449PubMedCrossRefGoogle Scholar
  7. Cooke CA, Heck MM, Earnshaw WC (1987) The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J Cell Biol 105:2053–2067PubMedCrossRefGoogle Scholar
  8. Cooke CA, Barnet RL, Earnshaw WC (1990) CENP-B: a major human centromere protein located beneath the kinetochore. J Cell Biol 110:1475–1488PubMedCrossRefGoogle Scholar
  9. Cox JV, Schenk EA, Olmstead JB (1983) Human anticentromere antibodies: distribution, characterization of antigens, and effect on microtubule organization. Cell 35:331–339PubMedCrossRefGoogle Scholar
  10. Diglio CA, Wolff DE, Meyers P (1983) Transformation of rat cerebral endothelial cells by Rous sarcoma virus. J Cell Biol 97:15–21PubMedCrossRefGoogle Scholar
  11. Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:1–11CrossRefGoogle Scholar
  12. Earnshaw WC, Ratrie BE, Mulligan RC (1989) Visualization of centromere proteins CENP-Band CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 98:1–12PubMedCrossRefGoogle Scholar
  13. Eichenlaub-Ritter U, Ruthmann A (1982) Holokinetic composite chromosomes with “diffuse” kinetochores in the micronuclear mitosis of a heterotrichous ciliate. Chromosoma 84:701–716CrossRefGoogle Scholar
  14. Fitzgerald PH (1989) Aberrant chromatid separation and aneuploidy. In: Resnick MA, Vig BK (eds). Mechanisms of Chromosome Distribution and Aneuploidy. Liss, New York, pp 103–108Google Scholar
  15. Fredga K (1971) Idiogram and fluorescence pattern of chromosomes of Indian muntjac. Hereditas 68:332–337PubMedCrossRefGoogle Scholar
  16. Fritzler MJ, Kinsella TD (1980) The CREST syndrome: a distinct serologic entity with anticentromere antibodies. Am J Med 69:520–526PubMedCrossRefGoogle Scholar
  17. Gerlach B, Sulleder E, Hauke M, Harms H, Schmid M (1984) Application of a high resolution TV-microscope system to estimate the sequence of centromere separation in muntjac chromosomes. Cytometry 5:562–571PubMedCrossRefGoogle Scholar
  18. Graves JAM, Zelesco PA (1988) Chromosome segregation from cell hybrids: does segregation result from asynchronous centromere separation? Genome 30:124–128PubMedCrossRefGoogle Scholar
  19. Greig GM, England SB, Bedford HM, Willard HF (1989) Chromosome specific alpha satellite DNA from the centromere of human chromosome 16. Am J Hum Genet 45:862–872PubMedGoogle Scholar
  20. Guldner HH, Lakomek HJ, Bautz FA (1984) Human anticentromere sera recognize a 19.5 kD nonhistone chromosomal protein from HeLa cells. Clin Exp Immunol 58:13–19PubMedGoogle Scholar
  21. Haaf T, Dominguez-Steglich M, Schmid M (1990) Immunogenetics IV. Human autoantibodies to heterochromatin-associated proteins. Cytogenet Cell Genet 53:40–51PubMedCrossRefGoogle Scholar
  22. Hadlaczky G, Praznovsky T, Rasko I, Kereso J (1989) Centromere proteins: I. Mitosis specific centromere antigen recognized by anticentromere autoantibodies. Chromosoma 97:282–288PubMedCrossRefGoogle Scholar
  23. Hill A, Bloom K (1987) Genetic manipulation of centromere function. Mol Cell Biol 7:2397–2405PubMedGoogle Scholar
  24. Joseph A, Mitchell A, Miller OJ (1989) The organization of mouse satellite DNA at the centromeres. Exp Cell Res 183:494–500PubMedCrossRefGoogle Scholar
  25. Kao FT, Puck TT (1970) Genetics of somatic mammalian cells: linkage studies with human x Chinese hamster cell hybrids. Nature 228:329–332PubMedCrossRefGoogle Scholar
  26. Kingwell B, Rattner JB (1987) Mammalian kinetochore/centromere composition: a 50 kDa antigen is present in the mammalian kinetochore/centromere. Chromosoma 95:403–407PubMedCrossRefGoogle Scholar
  27. Kuhn RM, Clarke L, Carbon J (1991) Clustered tRNA genes in Schizosaccharomyces pombe centromeric DNA sequence repeats. Proc Natl Acad Sci USA 88:1306–1310PubMedCrossRefGoogle Scholar
  28. Lenz P (1991) Untersuchungen zum Mechanismus östrogeninduzierter Mitosestörungen in Syrischen Hamsterembryofibroblasten. Thesis, Universität WürzburgGoogle Scholar
  29. Lima-de-Faria A (1983) Molecular evolution and organization of the chromosome. Elsevier, AmsterdamGoogle Scholar
  30. Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 109:1963–1973PubMedCrossRefGoogle Scholar
  31. McCarol RM, Fangman WL (1988) Time of replication of yeast centromeres and telomeres. Cell 54:505–513CrossRefGoogle Scholar
  32. McClintock B (1941) Spontaneous alterations in chromosome size and form in Zea mays. Cold Spring Harbor Symp Quant Biol 9:72–81Google Scholar
  33. Mehes K (1975) Non-random anaphase segregation of mitotic chromosomes. Acta Genet Med Gemellol 24:175–176PubMedGoogle Scholar
  34. Metzdorf R, Gotter E, Blin N (1988) A novel centromeric repetitive DNA from human chromosome 22. Chromosoma 97:154–158PubMedCrossRefGoogle Scholar
  35. Mole-Bajer J, Bajer AS, Zinkowski RP, Balczon RD, Brinkley BR (1990) Autoantibodies from a patient with scleroderma CREST recognized kinetochores of the higher plant Haemanthus. Proc Natl Acad Sci USA 87:3599–3603PubMedCrossRefGoogle Scholar
  36. Moroi Y, Peebles C, Fritzler MJ, Steigerwald J, Tan EM (1980) Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Natl Acad Sci USA 77:1627–1631PubMedCrossRefGoogle Scholar
  37. Nicklas B (1971) Mitosis. In: Prescott DM, Goldstein L, McConkey E (eds) Advances in cell biology, vol 2. Appleton-Century Crofts, New York, pp 225–297Google Scholar
  38. Palmer DK, O’Day K, Margolis RL (1989) Biochemical analysis of CENP-A, a centromere protein with histone-like properties. In: Resnick MA, Vig BK (eds) Prog Clin Biol Res 318:61–72Google Scholar
  39. Paweletz N, Vig BK, Finze E-M (1989) Evolution of compound centromeres. Cancer Genet Cytogenet 42:75–86PubMedCrossRefGoogle Scholar
  40. Resnick MA, Bloom K (1987) Lessons learned from yeast: a molecular and genetic analysis of centromere function. In: Vig BK, Sandberg A (eds) Progress and topics in cytogenetics: aneuploidy incidence and etiology, 7A. Liss, New York, pp 395–415Google Scholar
  41. Resnick MA, Vig BK (1989) Mechanism of chromosome distribution and aneuploidy. Liss, New York Rieder CL (1982) The formation, structure and composition of the mammalian kinetochore and kinetochore fiber. Int Rev Cytol 79:1–58Google Scholar
  42. Sealy L, Hartley J, Donelson J, Chalkley R, Hutchinson N, Hamkalo B (1981) Characterization of a highly repetitive sequence DNA family in rat. J Mol Biol 145:291–318PubMedCrossRefGoogle Scholar
  43. Simerly C, Balczon R, Brinkley BR, Schatten G (1990) Micro-injected kinetochore antibodies interfere with chromosome movement in meiotic and mitotic mouse oocytes. J Cell Biol 111: 1491–1504PubMedCrossRefGoogle Scholar
  44. Sternes KL, Vig BK (1989) Micronuclei, kinetochores and hypoploidy: tests with some agents. Mutagenes 4:425–431CrossRefGoogle Scholar
  45. Sullivan KF, Glass CA (1991) CENP-B is a highly conserved mammalian centromere protein with homology to the helix-loop-helix family of proteins. Chromosoma 100:360–370PubMedCrossRefGoogle Scholar
  46. Sumner AT (1991) Scanning electron microscopy of mammalian chromosomes from prophase to telophase. Chromosoma 100:410–418PubMedCrossRefGoogle Scholar
  47. Vig BK (1981) Sequence of centromere separation: analysis of mitotic chromosomes in man. Hum Genet 57:247–252PubMedCrossRefGoogle Scholar
  48. Vig BK (1982) Sequence of centromere separation: role of centromeric heterochromatin. Genetics 102:795–806PubMedGoogle Scholar
  49. Vig BK (1983a) Centromere separation: existence of sequences. Experientia 37:566–567CrossRefGoogle Scholar
  50. Vig BK (1983b) Sequence of centromere separation: occurrence, possible significance and control. Cancer Genet Cytogenet 8:249–274PubMedCrossRefGoogle Scholar
  51. Vig BK (1984a) Sequence of centromere separation: orderly segregation of multicentric chromosomes in mouse L-cells. Chromosoma 90:39–45PubMedCrossRefGoogle Scholar
  52. Vig BK (1984b) Sequence of centromere separation: another mechanism for the origin of nondisjunction. Hum Genet 66:239–243PubMedCrossRefGoogle Scholar
  53. Vig BK (1987) Sequence of centromere separation: a possible role for repetitive DNA. Mutagenesis 2:155–159PubMedCrossRefGoogle Scholar
  54. Vig BK, Athwal RS (1989) Sequence of centromere separation: separation in a quasi-stable mouse- human somatic cell hybrid. Chromosoma 98:167–173PubMedCrossRefGoogle Scholar
  55. Vig BK, Broccoli D (1988) Sequence of centromere separation: differential replication of pericentric heterochromatin in multicentric chromosomes. Chromosoma 96:311–317PubMedCrossRefGoogle Scholar
  56. Vig BK, Paweletz N (1988) Sequence of centromere separation: generation and maintenance of multicentric chromosomes in a rat cell line. Chromosoma 96:275–282PubMedCrossRefGoogle Scholar
  57. Vig BK, Rattner JB (1989) Centromere, kinetochore and cancer. CRC Crit Rev Oncogenes 1:343–371Google Scholar
  58. Vig BK, Sandberg A A (1987) Aneuploidy. Part A. Mechanisms and etiology. Liss, New YorkGoogle Scholar
  59. Vig BK, Sternes K (1991) Centromeres without kinetochore proteins: another mechanism for origin of aneuploidy in neoplasia. Cancer Genet Cytogent 51:269–272CrossRefGoogle Scholar
  60. Vig BK, Swearngin SE (1986) Sequence of centromere separation: kinetochore formation in induced laggards and micronuclei. Mutagenesis 1:461–465PubMedCrossRefGoogle Scholar
  61. Vig BK, Wodnicki J (1974) Separation of sister centromeres in some chromosomes from cultured human leukocytes. J Hered 65:149–152PubMedGoogle Scholar
  62. Vig BK, Zinkowski RP (1986) Sequence of centromere separation: a mechanism for orderly separation of dicentrics. Cancer Genet Cytogenet 22:347–359PubMedCrossRefGoogle Scholar
  63. Vig BK, Zinkowski RP, Michaelson D (1984) Evolution of octacentric isochromosome in mouse L-cells. Mutat Res 128:41–45PubMedCrossRefGoogle Scholar
  64. Vig BK, Sternes K, Paweletz N (1989) Centromere structure and function in neoplasia. Cancer Genet Cytogenet 43:151–178PubMedCrossRefGoogle Scholar
  65. Vig BK, Schroeter D, Paweletz N (1990) Sequence of centromere separation: early replication of repetitive DNA associated with inactive centromeres. Cancer Genet Cytogenet 50:57–67PubMedCrossRefGoogle Scholar
  66. Vig BK, Sternes K, Paweletz N (1991a) Lack of detectable kinetochores on some chromosomes of human x mouse somatic cell hybrid. Eur J Cell Biol 56:374–380PubMedGoogle Scholar
  67. Vig BK, Yoo HJ, Schiffmann D (1991b) Kinetochore proteins, peripheral location of chromosomes and nuclear blebbing: another look at genesis of aneuploidy. Mutagenesis 6:361–367PubMedCrossRefGoogle Scholar
  68. Weverick R, Earnshaw WC, Howard-Peeble PN, Willard HF (1990) Partial deletion of alpha satellite DNA associated with reduced amounts of the centromeric protein CENP-B in a mitotically stable human chromosome rearrangement. Mol Cell Biol 10:6374–6380Google Scholar
  69. Willard HF (1989) Human centromere structure: organization and potential role of alpha satellite DNA. In: Resnick MA, Vig BK (eds) Prog Clin Biol Res 318:9–18Google Scholar
  70. Willard HF, Waye JS (1987) Chromosome specific subsets of human alpha satellite DNA: analysis of sequence divergence within and between chromosomal subsets and evidence for an ancestral pentameric repeat. J Mol Evol 25:207–214PubMedCrossRefGoogle Scholar
  71. Wong AKC, Rattner JB (1988) Sequence organization and cytologic localization of the minor satellite of mouse. Nucl Acid Res 16:11645–11661CrossRefGoogle Scholar
  72. Yen TJ, Compton DA, Wise D, Zinkowski RP, Brinkley BR, Earnshaw WC, Cleveland DC (1991) CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J 10:1245–1254PubMedGoogle Scholar
  73. Zelesco PA, Graves JAM (1988) Chromosome segregation from cell hybrids. IV. Centromeres of both parental chromosome sets stain with antikinetochore antibody. Genome 32:271–274CrossRefGoogle Scholar
  74. Zinkowski R, Vig B, Broccoli D (1986) Characterization of kinetochores in multicentric chromosomes. Chromosoma 49:243–248CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • B. K. Vig
    • 1
    • 2
  • B. Richards
    • 1
  • N. Paweletz
    • 2
  1. 1.Department of BiologyUniversity of NevedaRenoUSA
  2. 2.Forschungsschwerpunkt 4Abteilung Wachstum u. Teilung d. Zelle Deutsches KrebsforschungszentrumHeidelbergGermany

Personalised recommendations