Skip to main content

The Mammalian Centromere: Centromere Separation, Kinetochore Proteins and Aneuploidy

  • Chapter
Advances in Mutagenesis Research

Part of the book series: Advances in Mutagenesis Research ((MUTAGENESIS,volume 4))

Abstract

Centromeres (primary constrictions of chromosomes) and kinetochores (specialized protein complex anchored to the centromere) are the sites of activities crucial for chromosome migration. Defects in the centromere, e.g., premature centromere division (Fitzgerald 1989; Vig and Rattner 1989) and kinetochore aberrations, e.g., absence of kinetochores (Vig and Sternes 1991; Vig et al. 1991b) appear to be associated with the genesis of aneuploidy. A host of other factors, e.g., spindle, microtubules, centrosomes, nuclear envelope-associated proteins (see Vig and Sandberg 1987; Resnick and Vig 1989), also affect the outcome of cell division. Recently, the field of chromosome migration has seen a strong upsurge of investigations including molecular biology of the centromere/kinetochore region. The present review, however, deals primarily with the characterization and activity of this region in relation to the genesis of aneuploidy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernat R, Borisy GG, Rothfield NF, Earnshaw WC (1990) Injection of anticentromere antibodies in interphase disrupts events required for chromosome movement at mitosis. J Cell Biol 111:1519–1533

    Article  PubMed  CAS  Google Scholar 

  • Bloom KS, Amaya E, Clarke L, Hill A, Yeh E (1984) Chromatin conformation of yeast centromeres. J Cell Biol 99:1559–1568

    Article  PubMed  CAS  Google Scholar 

  • Brinkley BR, Valdivia MM, Tousson A, Brenner SL (1984) Compound kinetochores of Indian muntjac: evolution by linear fusion of unit kinetochores. Chromosoma 91:1–11

    Article  PubMed  CAS  Google Scholar 

  • Brinkley BR, Zinkowski RP, Mollon WL, Davis FM, Pisegna MA, Pershouse M, Rao PN (1988) Movement and segregation of kinetochores experimentally detached from mammalian chromosomes. Nature 336:251–254

    Article  PubMed  CAS  Google Scholar 

  • Broccoli D, Paweletz N, Vig BK (1989) Sequence of centromere separation: characterization of multicentric chromosomes in a rat cell line. Chromosoma 98:13–22

    Article  PubMed  Google Scholar 

  • Comings DE, Okada TA (1970) Whole mount electron microscopy of the centromere region of metacentric and telocentric mammalian chromosomes. Cytogenetics 9:436–449

    Article  PubMed  CAS  Google Scholar 

  • Cooke CA, Heck MM, Earnshaw WC (1987) The inner centromere protein (INCENP) antigens: movement from inner centromere to midbody during mitosis. J Cell Biol 105:2053–2067

    Article  PubMed  CAS  Google Scholar 

  • Cooke CA, Barnet RL, Earnshaw WC (1990) CENP-B: a major human centromere protein located beneath the kinetochore. J Cell Biol 110:1475–1488

    Article  PubMed  CAS  Google Scholar 

  • Cox JV, Schenk EA, Olmstead JB (1983) Human anticentromere antibodies: distribution, characterization of antigens, and effect on microtubule organization. Cell 35:331–339

    Article  PubMed  CAS  Google Scholar 

  • Diglio CA, Wolff DE, Meyers P (1983) Transformation of rat cerebral endothelial cells by Rous sarcoma virus. J Cell Biol 97:15–21

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:1–11

    Article  Google Scholar 

  • Earnshaw WC, Ratrie BE, Mulligan RC (1989) Visualization of centromere proteins CENP-Band CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma 98:1–12

    Article  PubMed  CAS  Google Scholar 

  • Eichenlaub-Ritter U, Ruthmann A (1982) Holokinetic composite chromosomes with “diffuse” kinetochores in the micronuclear mitosis of a heterotrichous ciliate. Chromosoma 84:701–716

    Article  Google Scholar 

  • Fitzgerald PH (1989) Aberrant chromatid separation and aneuploidy. In: Resnick MA, Vig BK (eds). Mechanisms of Chromosome Distribution and Aneuploidy. Liss, New York, pp 103–108

    Google Scholar 

  • Fredga K (1971) Idiogram and fluorescence pattern of chromosomes of Indian muntjac. Hereditas 68:332–337

    Article  PubMed  CAS  Google Scholar 

  • Fritzler MJ, Kinsella TD (1980) The CREST syndrome: a distinct serologic entity with anticentromere antibodies. Am J Med 69:520–526

    Article  PubMed  CAS  Google Scholar 

  • Gerlach B, Sulleder E, Hauke M, Harms H, Schmid M (1984) Application of a high resolution TV-microscope system to estimate the sequence of centromere separation in muntjac chromosomes. Cytometry 5:562–571

    Article  PubMed  CAS  Google Scholar 

  • Graves JAM, Zelesco PA (1988) Chromosome segregation from cell hybrids: does segregation result from asynchronous centromere separation? Genome 30:124–128

    Article  PubMed  CAS  Google Scholar 

  • Greig GM, England SB, Bedford HM, Willard HF (1989) Chromosome specific alpha satellite DNA from the centromere of human chromosome 16. Am J Hum Genet 45:862–872

    PubMed  CAS  Google Scholar 

  • Guldner HH, Lakomek HJ, Bautz FA (1984) Human anticentromere sera recognize a 19.5 kD nonhistone chromosomal protein from HeLa cells. Clin Exp Immunol 58:13–19

    PubMed  CAS  Google Scholar 

  • Haaf T, Dominguez-Steglich M, Schmid M (1990) Immunogenetics IV. Human autoantibodies to heterochromatin-associated proteins. Cytogenet Cell Genet 53:40–51

    Article  PubMed  CAS  Google Scholar 

  • Hadlaczky G, Praznovsky T, Rasko I, Kereso J (1989) Centromere proteins: I. Mitosis specific centromere antigen recognized by anticentromere autoantibodies. Chromosoma 97:282–288

    Article  PubMed  CAS  Google Scholar 

  • Hill A, Bloom K (1987) Genetic manipulation of centromere function. Mol Cell Biol 7:2397–2405

    PubMed  CAS  Google Scholar 

  • Joseph A, Mitchell A, Miller OJ (1989) The organization of mouse satellite DNA at the centromeres. Exp Cell Res 183:494–500

    Article  PubMed  CAS  Google Scholar 

  • Kao FT, Puck TT (1970) Genetics of somatic mammalian cells: linkage studies with human x Chinese hamster cell hybrids. Nature 228:329–332

    Article  PubMed  CAS  Google Scholar 

  • Kingwell B, Rattner JB (1987) Mammalian kinetochore/centromere composition: a 50 kDa antigen is present in the mammalian kinetochore/centromere. Chromosoma 95:403–407

    Article  PubMed  CAS  Google Scholar 

  • Kuhn RM, Clarke L, Carbon J (1991) Clustered tRNA genes in Schizosaccharomyces pombe centromeric DNA sequence repeats. Proc Natl Acad Sci USA 88:1306–1310

    Article  PubMed  CAS  Google Scholar 

  • Lenz P (1991) Untersuchungen zum Mechanismus östrogeninduzierter Mitosestörungen in Syrischen Hamsterembryofibroblasten. Thesis, Universität Würzburg

    Google Scholar 

  • Lima-de-Faria A (1983) Molecular evolution and organization of the chromosome. Elsevier, Amsterdam

    Google Scholar 

  • Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 109:1963–1973

    Article  PubMed  CAS  Google Scholar 

  • McCarol RM, Fangman WL (1988) Time of replication of yeast centromeres and telomeres. Cell 54:505–513

    Article  Google Scholar 

  • McClintock B (1941) Spontaneous alterations in chromosome size and form in Zea mays. Cold Spring Harbor Symp Quant Biol 9:72–81

    Google Scholar 

  • Mehes K (1975) Non-random anaphase segregation of mitotic chromosomes. Acta Genet Med Gemellol 24:175–176

    PubMed  CAS  Google Scholar 

  • Metzdorf R, Gotter E, Blin N (1988) A novel centromeric repetitive DNA from human chromosome 22. Chromosoma 97:154–158

    Article  PubMed  CAS  Google Scholar 

  • Mole-Bajer J, Bajer AS, Zinkowski RP, Balczon RD, Brinkley BR (1990) Autoantibodies from a patient with scleroderma CREST recognized kinetochores of the higher plant Haemanthus. Proc Natl Acad Sci USA 87:3599–3603

    Article  PubMed  CAS  Google Scholar 

  • Moroi Y, Peebles C, Fritzler MJ, Steigerwald J, Tan EM (1980) Autoantibody to centromere (kinetochore) in scleroderma sera. Proc Natl Acad Sci USA 77:1627–1631

    Article  PubMed  CAS  Google Scholar 

  • Nicklas B (1971) Mitosis. In: Prescott DM, Goldstein L, McConkey E (eds) Advances in cell biology, vol 2. Appleton-Century Crofts, New York, pp 225–297

    Google Scholar 

  • Palmer DK, O’Day K, Margolis RL (1989) Biochemical analysis of CENP-A, a centromere protein with histone-like properties. In: Resnick MA, Vig BK (eds) Prog Clin Biol Res 318:61–72

    Google Scholar 

  • Paweletz N, Vig BK, Finze E-M (1989) Evolution of compound centromeres. Cancer Genet Cytogenet 42:75–86

    Article  PubMed  CAS  Google Scholar 

  • Resnick MA, Bloom K (1987) Lessons learned from yeast: a molecular and genetic analysis of centromere function. In: Vig BK, Sandberg A (eds) Progress and topics in cytogenetics: aneuploidy incidence and etiology, 7A. Liss, New York, pp 395–415

    Google Scholar 

  • Resnick MA, Vig BK (1989) Mechanism of chromosome distribution and aneuploidy. Liss, New York Rieder CL (1982) The formation, structure and composition of the mammalian kinetochore and kinetochore fiber. Int Rev Cytol 79:1–58

    Google Scholar 

  • Sealy L, Hartley J, Donelson J, Chalkley R, Hutchinson N, Hamkalo B (1981) Characterization of a highly repetitive sequence DNA family in rat. J Mol Biol 145:291–318

    Article  PubMed  CAS  Google Scholar 

  • Simerly C, Balczon R, Brinkley BR, Schatten G (1990) Micro-injected kinetochore antibodies interfere with chromosome movement in meiotic and mitotic mouse oocytes. J Cell Biol 111: 1491–1504

    Article  PubMed  CAS  Google Scholar 

  • Sternes KL, Vig BK (1989) Micronuclei, kinetochores and hypoploidy: tests with some agents. Mutagenes 4:425–431

    Article  CAS  Google Scholar 

  • Sullivan KF, Glass CA (1991) CENP-B is a highly conserved mammalian centromere protein with homology to the helix-loop-helix family of proteins. Chromosoma 100:360–370

    Article  PubMed  CAS  Google Scholar 

  • Sumner AT (1991) Scanning electron microscopy of mammalian chromosomes from prophase to telophase. Chromosoma 100:410–418

    Article  PubMed  CAS  Google Scholar 

  • Vig BK (1981) Sequence of centromere separation: analysis of mitotic chromosomes in man. Hum Genet 57:247–252

    Article  PubMed  CAS  Google Scholar 

  • Vig BK (1982) Sequence of centromere separation: role of centromeric heterochromatin. Genetics 102:795–806

    PubMed  CAS  Google Scholar 

  • Vig BK (1983a) Centromere separation: existence of sequences. Experientia 37:566–567

    Article  Google Scholar 

  • Vig BK (1983b) Sequence of centromere separation: occurrence, possible significance and control. Cancer Genet Cytogenet 8:249–274

    Article  PubMed  CAS  Google Scholar 

  • Vig BK (1984a) Sequence of centromere separation: orderly segregation of multicentric chromosomes in mouse L-cells. Chromosoma 90:39–45

    Article  PubMed  CAS  Google Scholar 

  • Vig BK (1984b) Sequence of centromere separation: another mechanism for the origin of nondisjunction. Hum Genet 66:239–243

    Article  PubMed  CAS  Google Scholar 

  • Vig BK (1987) Sequence of centromere separation: a possible role for repetitive DNA. Mutagenesis 2:155–159

    Article  PubMed  CAS  Google Scholar 

  • Vig BK, Athwal RS (1989) Sequence of centromere separation: separation in a quasi-stable mouse- human somatic cell hybrid. Chromosoma 98:167–173

    Article  PubMed  CAS  Google Scholar 

  • Vig BK, Broccoli D (1988) Sequence of centromere separation: differential replication of pericentric heterochromatin in multicentric chromosomes. Chromosoma 96:311–317

    Article  PubMed  CAS  Google Scholar 

  • Vig BK, Paweletz N (1988) Sequence of centromere separation: generation and maintenance of multicentric chromosomes in a rat cell line. Chromosoma 96:275–282

    Article  PubMed  CAS  Google Scholar 

  • Vig BK, Rattner JB (1989) Centromere, kinetochore and cancer. CRC Crit Rev Oncogenes 1:343–371

    CAS  Google Scholar 

  • Vig BK, Sandberg A A (1987) Aneuploidy. Part A. Mechanisms and etiology. Liss, New York

    Google Scholar 

  • Vig BK, Sternes K (1991) Centromeres without kinetochore proteins: another mechanism for origin of aneuploidy in neoplasia. Cancer Genet Cytogent 51:269–272

    Article  CAS  Google Scholar 

  • Vig BK, Swearngin SE (1986) Sequence of centromere separation: kinetochore formation in induced laggards and micronuclei. Mutagenesis 1:461–465

    Article  PubMed  CAS  Google Scholar 

  • Vig BK, Wodnicki J (1974) Separation of sister centromeres in some chromosomes from cultured human leukocytes. J Hered 65:149–152

    PubMed  CAS  Google Scholar 

  • Vig BK, Zinkowski RP (1986) Sequence of centromere separation: a mechanism for orderly separation of dicentrics. Cancer Genet Cytogenet 22:347–359

    Article  PubMed  CAS  Google Scholar 

  • Vig BK, Zinkowski RP, Michaelson D (1984) Evolution of octacentric isochromosome in mouse L-cells. Mutat Res 128:41–45

    Article  PubMed  CAS  Google Scholar 

  • Vig BK, Sternes K, Paweletz N (1989) Centromere structure and function in neoplasia. Cancer Genet Cytogenet 43:151–178

    Article  PubMed  CAS  Google Scholar 

  • Vig BK, Schroeter D, Paweletz N (1990) Sequence of centromere separation: early replication of repetitive DNA associated with inactive centromeres. Cancer Genet Cytogenet 50:57–67

    Article  PubMed  CAS  Google Scholar 

  • Vig BK, Sternes K, Paweletz N (1991a) Lack of detectable kinetochores on some chromosomes of human x mouse somatic cell hybrid. Eur J Cell Biol 56:374–380

    PubMed  CAS  Google Scholar 

  • Vig BK, Yoo HJ, Schiffmann D (1991b) Kinetochore proteins, peripheral location of chromosomes and nuclear blebbing: another look at genesis of aneuploidy. Mutagenesis 6:361–367

    Article  PubMed  CAS  Google Scholar 

  • Weverick R, Earnshaw WC, Howard-Peeble PN, Willard HF (1990) Partial deletion of alpha satellite DNA associated with reduced amounts of the centromeric protein CENP-B in a mitotically stable human chromosome rearrangement. Mol Cell Biol 10:6374–6380

    Google Scholar 

  • Willard HF (1989) Human centromere structure: organization and potential role of alpha satellite DNA. In: Resnick MA, Vig BK (eds) Prog Clin Biol Res 318:9–18

    Google Scholar 

  • Willard HF, Waye JS (1987) Chromosome specific subsets of human alpha satellite DNA: analysis of sequence divergence within and between chromosomal subsets and evidence for an ancestral pentameric repeat. J Mol Evol 25:207–214

    Article  PubMed  CAS  Google Scholar 

  • Wong AKC, Rattner JB (1988) Sequence organization and cytologic localization of the minor satellite of mouse. Nucl Acid Res 16:11645–11661

    Article  CAS  Google Scholar 

  • Yen TJ, Compton DA, Wise D, Zinkowski RP, Brinkley BR, Earnshaw WC, Cleveland DC (1991) CENP-E, a novel human centromere-associated protein required for progression from metaphase to anaphase. EMBO J 10:1245–1254

    PubMed  CAS  Google Scholar 

  • Zelesco PA, Graves JAM (1988) Chromosome segregation from cell hybrids. IV. Centromeres of both parental chromosome sets stain with antikinetochore antibody. Genome 32:271–274

    Article  Google Scholar 

  • Zinkowski R, Vig B, Broccoli D (1986) Characterization of kinetochores in multicentric chromosomes. Chromosoma 49:243–248

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vig, B.K., Richards, B., Paweletz, N. (1993). The Mammalian Centromere: Centromere Separation, Kinetochore Proteins and Aneuploidy. In: Obe, G. (eds) Advances in Mutagenesis Research. Advances in Mutagenesis Research, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77466-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77466-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77468-3

  • Online ISBN: 978-3-642-77466-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics