Skip to main content

Three-Way Differential Staining of Chromosomes for the Identification of SCEs per Cell Cycle: Fundamentals and Applications

  • Chapter
Advances in Mutagenesis Research

Part of the book series: Advances in Mutagenesis Research ((MUTAGENESIS,volume 4))

Abstract

Sister chromatid exchanges (SCEs) are usually scored in cells which have incorporated 5-bromodeoxyuridine (BrdUrd) for two cell cycles or, alternatively, for just one cell cycle followed by another in the absence of the halogenated nucleoside. By using this approach, however, the yield of SCEs observed at second mitosis is the sum of exchanges which occur in either of the two cell cycles. Therefore, it is impossible to distinguish which SCEs took place during the first or the second cell cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bamezai R, Shiraishi Y (1987) Three-way differentiation of sister chromatids in endoreduplicated (M3) chromosomes of Bloom syndrome B-lymphoid cell line. Hum Genet 75:239–243

    Article  PubMed  CAS  Google Scholar 

  • Carrano AV, Minkler JL, Dillehay LE, Thompson LH (1986) Incorporated bromodeoxyuridine enhances the sister-chromatid exchange and chromosomal aberration frequencies in an EMS- sensitive Chinese hamster cell line. Mutat Res 162:233–239

    Article  PubMed  CAS  Google Scholar 

  • Chaganti J, Schonberg S, German J (1974) A manifold increase in sister chromatid exchanges in Bloom’s syndrome lymphocytes. Proc Natl Acad Sci USA 71:4508–4512

    Article  PubMed  CAS  Google Scholar 

  • Chan JYH, Thompson LH, Becker FF (1984) DNA-ligase activities appear normal in the CHO mutant EM9. Mutat Res 131:209–214

    PubMed  CAS  Google Scholar 

  • Chan JYH, Becker FF, German J, Ray JH (1987) Altered DNA ligase I activity in Bloom’s syndrome cells. Nature 325:357–359

    Article  PubMed  CAS  Google Scholar 

  • Cleaver JE (1981) Correlations between sister chromatid exchange frequency and replicón sizes. A model for the mechanism of SCE production. Exp Cell Res 136:27–39

    Article  PubMed  CAS  Google Scholar 

  • Cohen SS, Flaks JG, Barner HD, Loeb MR, Lichtenstein J (1958) The model of action of 5-fluorouracil and its derivatives. Proc Natl Acad Sci USA 44:1004–1012

    Article  PubMed  CAS  Google Scholar 

  • Conner MK (1984) Persistence of SCE-inducing lesions in vivo: relevance to mechanism of SCE formation. In: Tice RR, Hollaender A (eds) Sister chromatid exchanges. Plenum Press, New York, pp 199–214

    Google Scholar 

  • Conner MK, Cheng M (1983) Persistence of ethyl carbamate-induced DNA damage in vivo as indicated by sister chromatid exchange analysis. Cancer Res 43:965–971

    PubMed  CAS  Google Scholar 

  • Conner MK, Cheng M, Bregel JA (1984) A path probability model for sister chromatid exchanges induced by alkylating agents. Mutat Res 126:35–46

    Article  PubMed  CAS  Google Scholar 

  • Cortés F, Andersson HC (1987) Analysis of SCEs in Vicia faba chromosomes by a simple fluorescent plus Giemsa technique. Hereditas 107:7–13

    Article  Google Scholar 

  • Cortés F, Morgan WF, Wolff S (1987) Effect of exogenous thymidine on sister-chromatid exchange frequency in Chinese hamster ovary cells with bromodeoxyuridine- and chlorodeoxyuridine- substituted chromosomes. Mutat Res 192:277–282

    Article  PubMed  Google Scholar 

  • Cortés F, Morgan WF, Valcárcel ER, Cleaver JE, Wolff S (1991) Both cross-links and monoadducts induced in DNA by psoralens can lead to sister chromatid exchange formation. Exp Cell Res 196:127–130

    Article  PubMed  Google Scholar 

  • Davidson RL, Kauffman ER, Dougherty CP, Ouellete AM, DiFolco CM, Latt SA (1980) Induction of sister chromatid exchanges by BUdR is largely independent of the BUdR content of DNA. Nature 284:74–76

    Article  PubMed  CAS  Google Scholar 

  • Dillehay LE, Thompson LH, Minkler JL, Carrano AV (1983) The relationship between sister- chromatid exchange and perturbations in DNA replication in mutant EM9 and normal CHO cells. Mutat Res 109:283–296

    Article  PubMed  CAS  Google Scholar 

  • Dillehay LE, Jacobson-Kram DJ, Williams JR (1989) DNA topoisomerases and models of sister- chromatid exchange. Mutat Res 215:15–23

    Article  PubMed  CAS  Google Scholar 

  • Escalza P, Cortés F, Schvartzman JB (1985) Induction of sister-chromatid exchanges (SCEs) by 5-fluorodeoxyuridine: the role of 5-bromodeoxyuridine incorporated into parental DNA. Mutat Res 151:77–82

    Article  PubMed  CAS  Google Scholar 

  • Escalza P, Piñero J, Cortés F (1989a) Scoring of SCE frequency per cell cycle in CHO chromosomes by means of a standardized 3-way-differential staining method. Mutat Res 215:139–145

    Article  PubMed  CAS  Google Scholar 

  • Escalza P, Piñero J, Cortés F (1989b) A standardized method for the three-way differential staining of plant chromosomes and the scoring of SCEs per cell cycle. Mutat Res 216:203–209

    PubMed  CAS  Google Scholar 

  • Escalza P, Daza P, Piñero J, Cortés F (1992) Different effectiveness of 4-NQO, MMC and EMS to induce lesions in DNA leading to SCE throughout successive cell cycles in CHO cells. Mutagenesis 7:137–140

    Article  PubMed  CAS  Google Scholar 

  • Friedberg CR (1985) DNA repair. Freeman, San Francisco

    Google Scholar 

  • Geard CR (1974) Comparison of sister chromatid exchanges from three successive cycles in Wallabiabicolor chromosomes. Mutat Res 23:67–78

    Article  PubMed  CAS  Google Scholar 

  • German J (1974) Bloom’s syndrome. II. The prototype of human genetic disorders predisposes to chromosome instability and cancer. In: German J (ed) Chromosomes and cancer. Wiley, New York, pp 601–617

    Google Scholar 

  • German J, Passarge E (1989) Bloom’s syndrome. XII. Report from the registry for 1987. Clin Genet 35:57–69

    Article  PubMed  CAS  Google Scholar 

  • German J, Schonberg S, Louie E, Chaganti RSK (1977) Bloom’s syndrome. IV Sister chromatid exchanges in lymphocytes. Am J Hum Genet 29:248–255

    PubMed  CAS  Google Scholar 

  • Gratzner HG, Leif RC, Ingram DJ, Castro A (1975) The use of antibody specific for bromodeoxy- uridine for the mmunofluorescent determination of DNA replication in single cell and chromosomes. Exp Cell Res 95:88–94

    Article  PubMed  CAS  Google Scholar 

  • Hartmann KU, Heidelberger C (1961) Studies on fluorinated pyrimidines. XIII. Inhibition of thymidylate synthetase. J Biol Chem 236:3006–3013

    PubMed  CAS  Google Scholar 

  • Heartlein MW, Tsuji H, Latt SA (1987) 5-Bromodeoxyuridine-dependent increase in sister chromatid exchange formation in Bloom’s syndrome is associated with reduction in topoisomerase II activity. Exp Cell Res 169:245–254

    Article  PubMed  CAS  Google Scholar 

  • Heddle J A (1969) Influence of false twins on the ratios of twin and single sister chromatid exchanges. J Theor Biol 22:151–162

    Article  PubMed  CAS  Google Scholar 

  • Ishii Y, Bender MA (1978) Factors influencing the frequency of mitomycin C-induced sister- chromatid exchanges in 5-bromodeoxyuridine-substituted human lymphocytes in culture. Mutat Res 51:411–418

    Article  PubMed  CAS  Google Scholar 

  • Kanda N (1982) Spontaneous sister chromatid exchange in vivo. In: Sandberg AA (ed) Sister chromatid exchange. Liss, New York, pp 279–276

    Google Scholar 

  • Kato H (1974) Induction of sister-chromatid exchanges by chemical mutagens and its possible relevance to DNA repair. Exp Cell Res 85:239–247

    Article  PubMed  CAS  Google Scholar 

  • Kato H (1977) Spontaneous and induced sister chromatid exchanges as revealed by the BUdR- labelling method. Int Rev Cytol 49:55–93

    Article  PubMed  CAS  Google Scholar 

  • Kusyc CJ, Hsu TC (1979) Induction of high frequencies of endoreduplication in mammalian cell cultures with 33258 Hoechst and Rubidazone. Cytogenet Cell Genet 23:39–43

    Article  Google Scholar 

  • Latt SA, Loveday SA (1978) Characterization of sister-chromatid exchange induction by 8- methoxypsoralen plus near UV light. Cytogenet Cell Genet 21:184–200

    Article  PubMed  CAS  Google Scholar 

  • Linnainmaa K, Wolff S (1982) Sister-chromatid exchange induced by short-lived monoadducts produced by the bifunctional agents mitomycin C and 8-methoxypsoralen. Environ Mutagen 4:239–247

    Article  PubMed  CAS  Google Scholar 

  • Littlefield LG, Coyler SP, Joiner EE, DuFrain RJ (1979) Sister chromatid exchanges in human lymphocytes exposed to ionizing radiation during G0. Radiat Res 78:514–521

    Article  PubMed  CAS  Google Scholar 

  • Littlefield LG, Colyer SP, DuFrain RJ (1983) SCE evaluations in human lymphocytes after G0 exposure to mitomycin C: lack of expression of MMC-induced SCEs in cells that have undergone greater than two in vivo divisions. Mutat Res 107:119–130

    Article  PubMed  CAS  Google Scholar 

  • Mazrimas JA, Stetka DG (1978) Direct evidence for the role of incorporated BudR in the induction of sister chromatid exchanges. Exp Cell Res 117:23–30

    Article  PubMed  CAS  Google Scholar 

  • McClintock B (1938) The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic ehaviour of ring-shaped chromosomes. Genetics 23:315–376

    PubMed  CAS  Google Scholar 

  • Miller RC, Aronson MM, Nichols WW (1976) Effect of treatment on differential staining of BrdU- labelled metaphase chromosomes: three-way differentiation of M3 chromosomes. Chromosoma 55:1–11

    Article  PubMed  CAS  Google Scholar 

  • Morales-Ramírez P, Rodriguez-Reyes R, Vallarino-Kelly T (1987) Analysis of spontaneous sister-chromatid exchanges in vivo by three-way differentiation. Mutat Res 178:49–56

    Article  PubMed  Google Scholar 

  • Morales-Ramirez P, Vallarino-Kelly T, Rodriguez-Reyes R (1988) Occurrence in vivo of sister chromatid exchanges at the same locus in successive cell divisions caused by nonrepairable lesions induced by gamma rays. Environ Mol Mutagen 11:183–193

    Article  PubMed  CAS  Google Scholar 

  • Morales-Ramirez P, Rodriguez-Reyes R, Vallarino-Kelly T (1990) Fate of DNA lesions that elicit sister-chromatid exchanges. Mutat Res 232:77–88

    Article  PubMed  CAS  Google Scholar 

  • Morgan WF, Bodycote J, Doida Y, Fero ML, Hahn P, Kapp LN (1986) Spontaneous and 3-aminobenzamide-induced sister-chromatid exchange frequencies estimated by ring chromosome analysis. Mutagenesis 1 (6):453–459

    Article  PubMed  CAS  Google Scholar 

  • Natarajan AT, Czukás I, van Zeeland A A (1981) Contribution of incorporated 5-bromodeoxyuri- dine in DNA to the frequency of sister-chromatid exchanges induced by inhibitors of poly- (ADP-ribose)-polymerase. Mutat Res 84:125–132

    Article  PubMed  CAS  Google Scholar 

  • Natarajan AT, Rotteveel AHM, van Pietersson J, Schliermann MG (1986) Influence of incorporated 5-bromodeoxyuridine on the frequencies of spontaneous and induced sister-chromatid exchanges detected by immunological methods. Mutat Res 163:51–55

    Article  PubMed  CAS  Google Scholar 

  • Ockey CH (1981) Methyl-methanesulfonate (MMS)-induced SCEs are reduced by the BrdU used to visualize them. Chromosoma 84:243–256

    Article  PubMed  CAS  Google Scholar 

  • O’Neill JP, Heartlein MW, Preston RJ (1983) Sister chromatid exchanges and gene mutations induced by the replication of 5-bromo- and 5-chloro-deoxyuridine substituted DNA. Mutat Res 109:259–270

    Article  PubMed  Google Scholar 

  • Painter RB (1980) A replication model for sister-chromatid exchange. Mutat Res 70:337–341

    Article  PubMed  CAS  Google Scholar 

  • Perry P, Evans HJ (1975) Cytological detection of mutagen-carcinogen exposure by sister chromatid exchange. Nature 258:121–125

    Article  PubMed  CAS  Google Scholar 

  • Perry P, Wolff S (1974) New Giemsa method for the differential staining of sister chromatids. Nature 251:156–158

    Article  PubMed  CAS  Google Scholar 

  • Pinkel D, Thompson LH, Gray JW, Vanderlaan M (1985) Measurement of sister chromatid exchanges at very low bromodeoxyuridine-substitution levels using a monoclonal antibody in Chinese hamster ovary cells. Cancer Res 45:5795–5798

    PubMed  CAS  Google Scholar 

  • Pommier Y, Zelling LA, Kao-Shan C-S, Whang-Peng J, Bradley MO (1985) Correlations between intercalator-induced DNA strand breaks and sister chromatid exchanges, mutation and cytotoxicity in Chinese hamster cells. Cancer Res 45:3143–3149

    PubMed  CAS  Google Scholar 

  • Renault G, Gentil A, Chouroulinkov I (1982) Kinetics of induction of sister chromatid exchange by X-rays through two cell cycles. Mutat Res 94:359–368

    Article  PubMed  CAS  Google Scholar 

  • Sahar E, Kittrel C, Fulghum S, Feld M, Latt SA (1981) Sister-chromatid exchange induction in Chinese hamster ovary cells by 8-methoxypsoralen and brief pulses of laser light. Mutat Res 83:91–105

    Article  PubMed  CAS  Google Scholar 

  • Sandberg AA (1982) Sister chromatid exchanges in human states. In: Sandberg A (ed) Sister chromatid exchange. Liss, New York, pp 619–651

    Google Scholar 

  • San Sebastián JR, O’Neill JP, Hsie AW (1980) Induction of chromosome aberrations, sister chromatid exchanges and specific locus mutations in Chinese hamster ovary cells by 5-bromodeoxyuridine. Cytogenet Cell Genet 28:47–54

    Article  PubMed  Google Scholar 

  • Schvartzman JB (1979) Three-way differentiation of sister chromatids in 5-bromodeoxyuridine- substituted chromosomes. J Hered 70:423–424

    Google Scholar 

  • Schvartzman JB, Goyanes VJ (1980) A new method for the identification of SCEs per cell cycle in BrdUrd-substituted chromosomes. Cell Biol Int Rep 4:415–423

    Article  PubMed  CAS  Google Scholar 

  • Schvartzman JB, Tice RR (1982) 5-bromodeoxyuridine and its role in the production of sister chromatid exchanges. In: Sandberg AA (ed) Sister chromatid exchange. Liss, New York, pp 123–134

    Google Scholar 

  • Schvartzman JB, Cortés F, González-Fernández A, Gutiérrez C, López-Sáez (1979) On the nature of sister-chromatid exchanges in 5-bromodeoxyuridine-substituted chromosomes. Genetics 92:1251–1264

    PubMed  CAS  Google Scholar 

  • Schvartzman JB, Goyanes VJ, Tice RR (1984) DNA damage persistence and site specificity in SCE formation. In: Tice RR, Hollaender A (eds) Sister chromatid exchanges. Plenum Press, New York, pp 215–227

    Google Scholar 

  • Schvartzman JB, Goyanes VJ, Campos A, Lage AM, Veiras C, Silva MC, Ramos S (1985) Persistence of DNA lesions and the cytological cancellation of sister chromatid exchanges. Chromosoma (Berl) 92:7–10

    Article  CAS  Google Scholar 

  • Shiraishi Y, Ohtsuki Y (1987) SCE levels in Bloom-syndrome cells at very low bromo-deoxyuridine (BrdU) concentrations: monoclonal anti-BrdU antibody. Mutat Res 176:157–164

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi Y, Freeman AI, Sandberg AA (1976) Increased sister chromatid exchange in bone marrow and blood cells from Bloom’s syndrome. Cytogenet Cell Genet 17:162–173

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi Y, Yosida TH, Sandberg AA (1982) Analysis of single and twin sister chromatid exchanges in endoreduplicated normal and Bloom’s syndrome B-lymphoid cells. Chromosoma 87:1–8

    Article  PubMed  CAS  Google Scholar 

  • Shiraishi Y, Yosida TH, Sandberg AA (1983) Analysis of single and twin sister chromatid exchanges (SCEs) in Bloom’s syndrome based on cell fusion: single and twin SCEs in endoreduplication. Proc Natl Acad Sci USA 80:4369–4373

    Article  PubMed  CAS  Google Scholar 

  • Stetka DG (1979) Further analysis of the replication bypass model for sister chromatid exchange. Hum Genet 49:63–69

    PubMed  Google Scholar 

  • Sutou S (1981) Spontaneous sister-chromatid exchanges in Chinese hamster cells in vivo and in vitro. Mutat Res 82:331–341

    Article  PubMed  CAS  Google Scholar 

  • Taylor JH (1958) Sister-chromatid exchanges in tritium labelled chromosomes. Genetics 43:515–529

    PubMed  CAS  Google Scholar 

  • Thompson LH (1988) Mammalian cell mutations affecting recombination. In: Kucherlapati R, Smith GR (eds) Genetic recombination. American Society for Microbiology, Washington, pp 597–620

    Google Scholar 

  • Thompson LH, Brookman KW, Dillehay LE, Carrano AV, Mazrimas JA, Mooney CL, Minkler JL (1982) A CHO-cell strain having hypersensitivity to mutagens, a defect in DNA strand-break repair, and an extraordinary baseline frequency of sister-chromatid exchange. Mutat Res 95:427–440

    Article  PubMed  CAS  Google Scholar 

  • Tice RR, Schvartzman JB (1982) Sister chromatid exchange: a measure of DNA lesion persistence. In: Sandberg AA (ed) Sister chromatid exchange. Liss, New York, pp 33–45

    Google Scholar 

  • Tice RR, Chaillet J, Schneider EL (1975) Evidence derived from sister chromatid exchanges of restricted rejoining of chromatid subunits. Nature 256:642–644

    Article  PubMed  CAS  Google Scholar 

  • Tice RR, Chaillet J, Schneider EL (1976) Demonstration of spontaneous sister chromatid exchanges in vivo. Exp Cell Res 102:426–429

    Article  PubMed  CAS  Google Scholar 

  • Tsuji H, Kato H (1981) Three-way differential staining of sister chromatids in M3 chromosomes. Evidence for spontaneous sister chromatid exchanges in vitro. Exp Cell Res 134:433–444

    Article  PubMed  CAS  Google Scholar 

  • Tsuji H, Kojima T (1985) Presence of abnormally high incidences of sister chromatid exchanges in three successive cell cycles in Bloom’s syndrome lymphocytes. Chromosoma 93:87–93

    Article  PubMed  CAS  Google Scholar 

  • Tsuji H, Shiomi T, Tobari I (1984) High induction of sister chromatid exchange and chromosome aberration by 5-bromodeoxyuridine in an ethylmethane-sulfonate-sensitive mouse lymphoma cell mutant (ES4) In: Tice RR, Hollaender A (ed) Sister Chromatid exchange, Plenum Publishing, New York, pp 109–125

    Google Scholar 

  • Tsuji H, Heartlein MW, Latt SA (1988) Disparate effects of 5-bromodeoxyuridine; on sister- chromatid exchanges and chromosome aberrations in Bloom’s syndrome fibroblast. Mutat Res 198:241–253

    Article  PubMed  CAS  Google Scholar 

  • Tucker JD, Christensen ML, Strout CL, Carrano AV (1986) Determination of the baseline sister chromatid exchange frequency in human and mouse peripheral lymphocytes using monoclonal antibodies and very low doses of bromodeoxyuridine. Cytogenet Cell Genet 43:38–42

    Article  PubMed  CAS  Google Scholar 

  • Wegner RD (1991) Chromosomal instability syndromes in man. In: Obe G (ed) Advances in mutagenesis research, vol 3. Springer, Berlin Heidelberg New York, pp 81–130

    Chapter  Google Scholar 

  • Willis AE, Lindahl T (1987) DNA ligase I deficiency in Bloom’s syndrome. Nature 325:355–357

    Article  PubMed  CAS  Google Scholar 

  • Wolff S (1978) Chromosomal effects of mutagenic carcinogens and the nature of the lesions leading to sister-chromatid exchange. In: Evans HJ, Lloyd DC (eds) Mutagen-induced chromosome damage in man. Yale University Press, New York, pp 208–215

    Google Scholar 

  • Wolff S (1982) Chromosome aberrations, sister chromatid exchanges and the lesions that produce them. In: Wolff S (ed) Sister chromatid exchange. Wiley, New York, pp 41–57

    Google Scholar 

  • Wolff S, Perry P (1974) Differential Giemsa staining of sister chromatids and the study of sister chromatid exchanges without autoradiography. Chromosoma 48:431–453

    Article  Google Scholar 

  • Wolff S, Perry P (1975) Insight on chromosome structure from sister chromatid exchange ratios and the lack of both isolabelling and heterolabelling determined by the FPG technique. Exp Cell Res 93:23–30

    Article  PubMed  CAS  Google Scholar 

  • Wolff S, Bodycote J, Painter RB (1974) Sister chromatid exchanges induced in Chinese hamster ovary cells by UV irradiation at different stages of the cell cycle: the necessity for the cells to pass through S. Mutat Res 25:73–81

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cortés, F., Escalza, P. (1993). Three-Way Differential Staining of Chromosomes for the Identification of SCEs per Cell Cycle: Fundamentals and Applications. In: Obe, G. (eds) Advances in Mutagenesis Research. Advances in Mutagenesis Research, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77466-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77466-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77468-3

  • Online ISBN: 978-3-642-77466-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics