Skip to main content

Polytene Chromosomes in Mutagenesis

  • Chapter
Advances in Mutagenesis Research

Part of the book series: Advances in Mutagenesis Research ((MUTAGENESIS,volume 4))

  • 59 Accesses

Abstract

Since Muller introduced mutagenesis research in Drosophilain the early 1920s and reported the production of mutations by X-rays in 1927, Drosophilahas become one of the so far genetically best-analyzed eukaryotes. This is based on nearly a century of work in generating and analyzing mutants. Not only the ease of handling Drosophila melanogaster, the high reproductivity, the short generation time, and the existence of only four chromosomes per haploid genome have made the fly so suitable for genetic investigation, but also the existence of the giant polytene chromosomes in salivary gland nuclei played a crucial role in analyzing mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Alfageme CR, Rudkin GT, Cohen LH (1976) Loeaions of chromosomal proteins in polytene chromosomes. Proc Natl Acad Sci USA 73:2038–2042

    PubMed  CAS  Google Scholar 

  • Arcos-Terän L (1972) DNS-Replikation und die Natur der spät replizierenden Orte im X-Chromosom von Drosophila melanogaster.Chromosoma 37:233–296

    PubMed  Google Scholar 

  • Arcos-Terän L, Beermann W (1968) Changes of DNA replication behaviour associated with intragenic changes of the whiteregion inDrosophila melanogaster.Chromosoma 25:377–391

    PubMed  Google Scholar 

  • Ashburner M (1972a) Puffing patterns in Drosophila melanogasterand related species. In: Beermann W (ed) Results and problems in cell differentiation, vol 4. Springer, Berlin Heidelberg New York, pp 102–151

    Google Scholar 

  • Ashburner M (1972b) Ecdysone induction of puffing in polytene chromosomes of Drosophila melanogaster.The effects of inhibitors of RNA synthesis. Exp Cell Res 71:433–440

    PubMed  CAS  Google Scholar 

  • Ashburner M (1974) Sequential gene activation by ecdysone in polytene chromosomes of Drosophila melanogaster.II. The effects of inhibitors of protein synthesis. Dev Biol 39:141–157

    PubMed  CAS  Google Scholar 

  • Ashburner M (1989) Mutation and mutagenesis. In: Ashburner M (ed) Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 299–418

    Google Scholar 

  • Ashburner M, Berendes HD (1978) Puffing of polytene chromosomes. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophilavol 2b. Academic Press, New York, pp 316–395

    Google Scholar 

  • Ashburner M, Richards GP (1976) Sequential gene activation by ecdysone in polytene chromosomes of Drosophila melanogaster.III. Consequences of ecdysone withdrawal. Dev Biol 54: 241–255

    PubMed  CAS  Google Scholar 

  • Baker BS, Belote JM (1983) Sex determination and dosage compensation in Drosophila melanogaster.Annu Rev Genet 17:345–393

    PubMed  CAS  Google Scholar 

  • Bauer H (1939) Röntgenauslösung von Chromosomenmutationen bei Drosophila melanogaster.I. Bruchhäufigkeit, -Verteilung und -rekombination nach Speicheldrüsenuntersuchung. Chromo- soma 1:343–390

    Google Scholar 

  • Bauer H, Demerec M, Kaufmann BP (1938) X-ray induced chromosomal alterations in Drosophila melanogaster.Genetics 23:610–630

    PubMed  CAS  Google Scholar 

  • Becker HJ (1959) Die Puffs der Speicheldrüsenchromosomen von Drosophila melanogasterI. Beobachtungen zum Verhalten des Puffmusters im Normalstamm und bei zwei Mutanten, giantund lethal-giant-larvae.Chromosoma 10:654–678

    PubMed  CAS  Google Scholar 

  • Becker HJ (1962) Die Puffs der Speicheldrüsenchromosomen von Drosophila melanogasterII. Die Auslösung der Puffbildung, ihre Spezifität und ihre Beziehung zur Funktion der Ringdrüse. Chromosoma 13:341–384

    Google Scholar 

  • Beermann W (1952) Chromomerenkonstanz und spezifische Modifikationen der Chromosomenstruktur in der Entwicklung und Organdifferenzierung von Chironomus tentans.Chromosoma 5:139–198

    Google Scholar 

  • Beermann W (1961) Ein Balbianiring als Locus einer Speicheldrüsenmutation. Chromosoma 12:1–25

    PubMed  CAS  Google Scholar 

  • Beermann W (1962) Riesenchromosomen. Protoplasmatologia VI

    Google Scholar 

  • Beermann W (1972) Chromomeres and Genes. In: Beermann W (ed) Results and problems in cell differentiation, vol 4. Springer, Berlin Heidelberg New York, pp 1–33

    Google Scholar 

  • Bellen HJ, O’Kane CJ, Wilson C, Grossnikiaus U, Pearson RK, Gehring WJ (1989) P-element- mediated enhancer detection: a versatile method to study development in Drosophila.Genes Dev 3:1288–1300

    PubMed  CAS  Google Scholar 

  • Bender W, Spierer P, Hogness DS (1983) Chromosomal walking and jumping to isolate DNA from the Aceand rosyloci and the Bithoraxcomplex in Drosophila melanogaster.J Mol Biol 168: 17–33

    CAS  Google Scholar 

  • Berendes HD (1970) Polytene chromosome structure at the submicroscopic level. I. A map of region X, 1–4 E of Drosophila melanogaster.Chromosoma 29:118–130

    PubMed  CAS  Google Scholar 

  • Berendes HD, Keyl H-G (1967) Distribution of DNA in heterochromatin and euchromatin of polytene nuclei of Drosophila hydei.Genetics 57:1–13

    PubMed  CAS  Google Scholar 

  • Bier E, Vaessin H, Shepherd S, Lee K, McCall K, Barbel S, Ackerman R, Carretto R, Uemura T, Grell E, Jan LY, Jan YN (1989) Searching for pattern and mutation in the Drosophilagenome with a P-lacZvector. Genes Dev 3:1273–1287

    PubMed  CAS  Google Scholar 

  • Bingham PM, Kidwell MG, Rubin GM (1982) The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P-strain-specifie transposon family. Cell 29:995–1004

    PubMed  CAS  Google Scholar 

  • Bridges CB (1935) Salivary chromosome maps with a key to the banding of the chromosomes in Drosophila melanogaster.J Hered 26:60–64

    Google Scholar 

  • Bridges CB (1938) A revised map of the salivary gland X-chromosome ofDrosophila melanogaster.J Hered 29:11–13

    Google Scholar 

  • Bridges CB, Bridges PN (1939) A new map of the second chromosome: a revised map of the right limb of the second chromosome of Drosophila melanogaster.J Hered 30:475–476

    Google Scholar 

  • Bridges PN (1941a) A revised map of the left limb of the third chromosome of Drosophila melanogaster.J Hered 32:64–65

    Google Scholar 

  • Bridges PN (1941b) A revision of the salivary gland 3R-chromosome map of Drosophila melanogaster.J Hered 32:299–300

    Google Scholar 

  • Bridges PN (1942) A new map of the salivary gland gland 2L-chromosome of Drosophila melanogaster.J Hered 33:403–408

    Google Scholar 

  • Clever U, Karlson P (1960) Induktion von Puff-Veränderungen in den Speicheldrüsen von Chironomus tentansdurch Ecdyson. Exp Cell Res 20:623–626

    PubMed  CAS  Google Scholar 

  • Cooley L, Kelley R, Spradling A (1988) Insertional mutagenesis of the Drosophilagenome with single P elements. Science 239:1121–1128

    PubMed  CAS  Google Scholar 

  • Crowley TE, Meyerowitz EM (1984) Steroid regulation of RNAs transcribed from the Drosophila68C polytene chromosome puff. Dev Biol 102:110–121

    PubMed  CAS  Google Scholar 

  • Crowley TE, Mathers PH, Meyerowitz EM (1984) A trans-acting regulatory product necessary for expression of the Drosophila melanogaster68C glue gene cluster. Cell 39:149–156

    PubMed  CAS  Google Scholar 

  • Engels WR (1979) Extrachromosomal control of mutability in Drosophila melanogaster.Proc Natl Acad Sci USA 76:4011–4015

    CAS  Google Scholar 

  • Engels WR (1983) The P family of transposable elements in Drosophila.Annu Rev Genet 17:315–344

    PubMed  CAS  Google Scholar 

  • Engels WR (1989) P elements in Drosophila melanogaster.In: Berg DE, Howe MM (eds) Mobile DNA. Am Soc Microbiol Washington DC, pp 437–484

    Google Scholar 

  • Fasano L, Kerridge S (1988) Monitoring positional information during oogenesis in adult Drosophila.Development 104:245–253

    PubMed  CAS  Google Scholar 

  • Frasch M, Saumweber H (1989) Two proteins from Drosophilanuclei are bound to chromatin and are detected in a series of puffs on polytene chromosomes. Chromosoma 97:272–281

    PubMed  CAS  Google Scholar 

  • Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cyto-logical preparations. Proc Natl Acad Sci USA 63:378–383

    PubMed  CAS  Google Scholar 

  • Ghysen A, O’Kane C (1989) Neural enhancer-like elements as specific cell markers in Drosophila.Development 105:35–52

    PubMed  CAS  Google Scholar 

  • Golubovsky MD, Ivanov YN, Green MM (1977) Genetic instability in Drosophila melanogaster:putative multiple insertion mutants at the singedbristle locus. Proc Natl Acad Sci USA 74:2973–2975

    PubMed  CAS  Google Scholar 

  • Green MM (1977) Genetic instability in Drosophila melanogaster: de novo induction of putative insertion mutations. Proc Natl Acad Sci USA 74:3490–3493

    PubMed  CAS  Google Scholar 

  • Grigliatti T (1986) Mutagenesis. In: Roberts DB (ed) Drosophila: a practical approach. IRL Press, Oxford, pp 39–58

    Google Scholar 

  • Grossbach U (1969) Chromosomen-Aktivität und biochemische Zelldifferenzierung in den Speicheldrüsen vonCamptochironomus.Chromosoma 28:136–187

    PubMed  CAS  Google Scholar 

  • Grossbach U (1977) The salivary gland of Chironomus(Diptera): a model system for the study of cell differentiation. In: Beermann W (ed) Biochemical differentiation in insect glands. Results and problems in cell differentiation, vol 8. Springer, Berlin Heidelberg New York, pp 147–196

    Google Scholar 

  • Grossnikiaus U, Bellen HJ, Wilson C, Gehring WJ (1989) P-element-mediated enhancer detection applied to the study of oogenesis in Drosophila.Development 107:189–200

    Google Scholar 

  • Hansson L, Lambertsson A (1983) The role ofsu(f)gene function and ecdysterone in transcription of glue polypeptide mRNAs in Drosophila melanogaster.Mol Gen Genet 192:395–401

    CAS  Google Scholar 

  • Hansson L, Lineruth K, Lambertsson A (1981) Effect of the /(/) su(f) ts61gmutation of Drosophila melanogasteron the glue protein synthesis. Wilhelm Roux’s Arch Dev Biol 190:308–312

    CAS  Google Scholar 

  • Hazelrigg T, Levis R, Rubin GM (1984) Transformation of white locus DNA in Drosophila:dosage compensation, zesteinteraction, and position effects. Cell 36:469–481

    PubMed  CAS  Google Scholar 

  • Heitz E, Bauer H (1933) Beweise für die Chromosomen-Natur der Kernschleifen in den Knäuelkernen von Bibio hortulansL. Z Zellforsch Mikrosk Anat 17:68–82

    Google Scholar 

  • Hinton CW, Lucchesi JC (1960) A cytogenetic study of crossing over in inversion heterozygotes of Drosophila melanogaster.Genetics 45:87–94

    PubMed  CAS  Google Scholar 

  • Hofmann A, Korge G (1987) Upstream sequences of dosage-compensated and non-compensated alleles of the larval secretion protein gene Sgs-4in Drosophila.Chromosoma 96:1–7

    PubMed  CAS  Google Scholar 

  • Hofmann A, Keinhorst A, Krumm A, Korge G (1987) Regulatory sequences of the Sgs-4gene of Drosophila melanogasteranalyzed by P-element-mediated transformation. Chromosoma 96:8–17

    PubMed  CAS  Google Scholar 

  • Holmquist G (1972) Transcription rates of individual polytene chromosome bands: effects of gene dosage and sex in Drosophila.Chromosoma 36:413–452

    PubMed  CAS  Google Scholar 

  • Jongens TA, Fowler T, Shermoen AW, Beckendorf SK (1988) Functional redundancy in the tissue-specific enhancer of the Drosophila Sgs-4gene. EMBO J 7:2559–2567

    PubMed  CAS  Google Scholar 

  • Judd BH, Shen MW, Kaufmann TC (1972) The anatomy and function of a segment of the X chromosome of Drosophila melanogaster.Genetics 71:139–156

    PubMed  CAS  Google Scholar 

  • Kaufmann BP (1946) Organization of the chromosome. I. Break distribution and chromosome recombination inDrosophila melanogaster.J Exp Zool 102:293–320

    PubMed  CAS  Google Scholar 

  • Karess RE, Rubin GM (1984) Analysis of P transposable element functions in Drosophila.Cell 38:135–146

    PubMed  CAS  Google Scholar 

  • Kessler C (1989) Detection of nucleic acids by enzyme-linked immunosorbent assay (ELISA) technique: an example for the development of a novel nonradioactive labeling and detection system with high sensitivity. In: Obe G (ed) Advances in mutagenesis research, vol 1. Springer, Berlin Heidelberg New York, pp 105–152

    Google Scholar 

  • Keyl H-G, Pelling C (1963) Différentielle DNS-Replikation in den Speicheldrüsen-Chromosomen vonChironomus thummi.Chromosoma 14:347–359

    Google Scholar 

  • Kid well MG (1979) Hybrid dysgenesis in Drosophila melanogaster: the relationship between the P-M and I-R interaction systems. Genet Res Camb 33:205–217

    Google Scholar 

  • Kidwell MG (1986) P-M mutagenesis. In: Roberts DB (ed) Drosophila:a practical approach. IRL Press, Oxford, pp 59–81

    Google Scholar 

  • Kidwell MG, Kidwell JF, Sved JA (1977) Hybrid dysgenesis in Drosophila melanogaster:a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86:813–833

    PubMed  CAS  Google Scholar 

  • King RL, Beams HW (1934) Somatic synapsis inChironomus, with special reference to the individuality of the chromosomes. J Morphol 56:577–586

    Google Scholar 

  • Koltzoff N (1934) The structure of the chromosomes in the salivary glands of Drosophila.Science 80:312–313

    PubMed  CAS  Google Scholar 

  • Korge G (1970a) Dosage compensation and effect for RNA synthesis in chromosome puffs of Drosophila melanogaster.Nature 225:386–388

    PubMed  CAS  Google Scholar 

  • Korge G (1970b) Dosiskompensation und Dosiseffekt für RNS-Synthese in Chromosomen-Puffs von Drosophila melanogaster.Chromosoma 30:430–464

    Google Scholar 

  • Korge G (1975) Chromosome puff activity and protein synthesis in larval salivary glands of Drosophila melanogaster.Proc Natl Acad Sci USA 72:4550–4554

    PubMed  CAS  Google Scholar 

  • Korge G (1977a) Larval saliva in Drosophila melanogaster:production, composition and relationship to chromosome puffs. Dev Biol 58:339–355

    PubMed  CAS  Google Scholar 

  • Korge G (1977b) Direct correlation between a chromosome puff and the synthesis of a larval saliva protein in Drosophila melanogaster.Chromosoma 62:155–174

    PubMed  CAS  Google Scholar 

  • Korge G (1987) Polytene chromosomes. In: Hennig W (ed) Results and problems in cell differentiation, vol 14. Springer, Berlin Heidelberg New York, pp 27–58

    Google Scholar 

  • Korge G, Heide I, Sehnert M, Hofmann A (1990) Promoter is an important determinant of developmentally regulated puffing at the Sgs-4locus ofDrosophila melanogaster.Dev Biol 138: 324–337

    PubMed  CAS  Google Scholar 

  • Krumm A, Roth GE, Korge G (1985) Transformation of salivary gland secretion protein gene Sgs-4in Drosophila:stage- and tissue-specific regulation, dosage compensation and position effect. Proc Natl Acad Sci USA 82:5055–5059

    PubMed  CAS  Google Scholar 

  • Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA 82:488–492

    PubMed  CAS  Google Scholar 

  • Kunkel TA, Roberts JD, Zakour RA (1987) Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol 154:367–382

    PubMed  CAS  Google Scholar 

  • Kuroda MI, Kernan M J, Kreber R, Ganetzky B, Baker BS (1991) The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell 66:935–947

    PubMed  CAS  Google Scholar 

  • Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophilapolytene chromosomes. Proc Natl Acad Sci USA 79:4381–4385

    PubMed  CAS  Google Scholar 

  • Lee WR (1976) Chemical mutagenesis. In: Ashburner M, Novitski E (eds) The genetics and biology ofDrosophilavol lc. Academic Press, London, pp 1299–1341

    Google Scholar 

  • Lefevre G (1974) The one band - one gene hypothesis: evidence from a cytogenetic analysis of mutant and nonmutant rearrangement breakpoints in Drosophila melanogaster.Cold Spring Harbor Symp Quant Biol 38:591–599

    PubMed  Google Scholar 

  • Lefevre G (1981) The distribution of randomly recovered X-ray induced sex-linked genetic effects in Drosophila melanogaster.Genetics 99:461–480

    PubMed  CAS  Google Scholar 

  • Lefevre G, Watkins W (1986) The question of total gene number in Drosophila melanogaster.Genetics 113:869–895

    PubMed  CAS  Google Scholar 

  • Lewis EB, Bacher F (1968) Methods of feeding ethyl methane sulfonate (EMS) toDrosophila males. DrosophilaInf Serv 43:193

    Google Scholar 

  • Lifschytz E (1983) Sequence replication and banding organization in the polytene chromosomes of Drosophila melanogaster.J Mol Biol 164:17–34

    CAS  Google Scholar 

  • Lucchesi JC, Manning JE (1987) Gene dosage compensation in Drosophila melanogaster.Adv Genet 24:371–429

    PubMed  CAS  Google Scholar 

  • McNabb SL, Beckendorf SK (1986) Cis-acting sequences which regulate expression of theSgs-4glue protein gene of Drosophila.EMBO J 5:2331–2340

    Google Scholar 

  • Merriam J, Smalley SL, Merriam A, Dawson B (1986) The molecular genome of Drosophila melanogaster.Drosophila Inf Serv 63:173–264

    Google Scholar 

  • Meyerowitz EM, Crosby MA, Garfinkel MD, Martin CH, Mathers PH, VijayRaghavan K (1985) The 68C glue puff of Drosophila.Cold Spring Harbor Symp Quant Biol 50:347–353

    PubMed  CAS  Google Scholar 

  • Misra S, Rio DC (1990) Cytotype control ofDrosophilaP element transposition: the 66 kD protein is a repressor of transposase activity. Cell 62:269–284

    PubMed  CAS  Google Scholar 

  • Mlodzik M, Hiromi Y, Weber U, Goodman CS, Rubin GM (1990) TheDrosophila seven-upgene, a member of the steroid receptor gene superfamily, controls photoreceptor cell fates. Cell 60: 211–224

    PubMed  CAS  Google Scholar 

  • Mukherjee AS, Beermann W (1965) Synthesis of ribonucleic acid by the X-chromosomes of Drosophila melanogasterand the problem of dosage compensation. Nature 207:785–786

    PubMed  CAS  Google Scholar 

  • Mulder MP, van Duijn P, Gloor HJ (1968) The replicative organization of DNA in polytene chromosomes of Drosophila hydei.Genetica 39:385–428

    PubMed  CAS  Google Scholar 

  • Muller HJ (1927) Artificial transmutation of the gene. Science 66:84–87

    PubMed  CAS  Google Scholar 

  • Muller HJ (1928) The measurement of gene mutation rate inDrosophila, its high variability, and its dependence upon temperature. Genetics 13:279–357

    PubMed  CAS  Google Scholar 

  • Mullins MC, Rio DC, Rubin GM (1989) Cis-acting DNA sequence requirements for P element transposition. Genes Dev 3:729–738

    PubMed  CAS  Google Scholar 

  • Nitasaka E, Mukai T, Yamazaki T (1987) Repressor of P elements in Drosophila melanogaster:cytotype determination by a defective P element with only open reading frames 0 through 2. Proc Natl Acad Sci USA 84:7605–760

    PubMed  CAS  Google Scholar 

  • O’Hare K, Rubin GM (1983) Structure of P transposable elements and their sites of insertion and excision in the Drosophila melanogastergenome. Cell 34:25–35

    PubMed  Google Scholar 

  • O’Kane CJ, Gehring WJ (1987) Detection in situ of genomic regulatory elements in Drosophila.Proc Natl Acad Sci USA 84:9123–9127

    PubMed  Google Scholar 

  • Painter TS (1933) A new method for the study of chromosome rearrangements and the plotting of chromosome maps. Science 78:585–586

    PubMed  CAS  Google Scholar 

  • Painter TS (1934) Salivary chromosomes and the attack on the gene. J Hered 25:456–476

    Google Scholar 

  • Pardue ML (1986) In situ hybridization to DNA of chromosomes and nuclei. In: Roberts DB (ed) Drosophila:a practical approach. IRL Press, Oxford, pp 111–137

    Google Scholar 

  • Pardue ML, Gall JG (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. Proc Natl Acad Sci USA 64:600–604

    PubMed  CAS  Google Scholar 

  • Pardue ML, Gerbi SA, Eckhardt RA, Gall JG (1970) Cytological localization of DNA complementary to ribosomal RNA in polytene chromosomes of Diptera. Chromosoma 29:268–290

    Google Scholar 

  • Pelling C (1964) Ribonukleinsäure-Synthese der Riesenchromosomen: Autoradiographische Untersuchungen an Chironomus tentans.Chromosoma 15:71–122

    PubMed  CAS  Google Scholar 

  • Pirrotta V, Jäckle H, Edström JE (1983) Microeloning of microdissected chromosome fragments. In: Hollaender A, Setlow JK (eds) Genetic engineering, principles and methods, vol 5. Plenum Press, New York, pp 1–17

    Google Scholar 

  • Plagens U, Greenleaf AL, Bautz EKF (1976) Distribution of RNA polymerase on Drosophilapolytene chromosomes as studied by direct immunofluorescence. Chromosoma 59:157–165

    PubMed  CAS  Google Scholar 

  • Rio DC (1990) Molecular mechanisms regulating DrosophilaP element transposition. Annu Rev Genet 24:543–578

    PubMed  CAS  Google Scholar 

  • Robertson HM, Preston CR, Phillis RW, Johnson-Schlitz DM, Benz WK, Engels WR (1988) A stable genomic source of P element transposase inDrosophila melanogaster.Genetics 118:461–470

    PubMed  CAS  Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic transformation of Drosophilawith transposable element vectors. Science 218:348–353

    PubMed  CAS  Google Scholar 

  • Rubin GM, Kidwell MG, Bingham PM (1982) The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. Cell 29:987–994

    PubMed  CAS  Google Scholar 

  • Rudkin GT (1969) Non replicating DNA inDrosophila. Genetics(Suppl) 61:227–238

    PubMed  CAS  Google Scholar 

  • Rudkin GT, Schultz J (1961) Disproportional synthesis of DNA in polytene chromosome regions in Drosophila melanogaster.Genetics 46:893–894

    Google Scholar 

  • Saumweber H, Symmons P, Kabisch R, Will H, BonhoefTer F (1980) Monoclonal antibodies against chromosomal proteins of Drosophila melanogaster.Chromosoma 80:253–275

    PubMed  CAS  Google Scholar 

  • Saumweber H, Frasch M, Korge G (1990) Two puff-specific proteins bind within the 2.5 kb upstream region of the Drosophila melanogaster Sgs-4gene. Chromosoma 99:52–60

    PubMed  CAS  Google Scholar 

  • Scalenghe F, Turco E, Edström JE, Pirrotta V, Melli M (1981) Microdissection and cloning of DNA from a specific region of Drosophila melanogasterpolytene chromosomes. Chromosoma 82:205–216

    PubMed  CAS  Google Scholar 

  • Silver LM, Elgin SCR (1976) A method for determination of the in situ distribution of chromosomal proteins. Proc Natl Acad Sci USA 73:423–427

    PubMed  CAS  Google Scholar 

  • Simmons MJ, Lim JK (1980) Site specificity of mutations arising in dysgenic hybrids of Drosophila melanogaster.Proc Natl Acad Sci USA 77:6042–6046

    PubMed  CAS  Google Scholar 

  • Sorsa M, Sorsa V (1967) Electron microscopic observations on interband fibrils in Drosophilasalivary chromosomes. Chromosoma 22:32–4

    PubMed  CAS  Google Scholar 

  • Sorsa M, Sorsa V (1968) Electron microscopic studies on band regions inDrosophilasalivary chromosomes. Ann Acad Sci Fenn Ser A IV 127:1–8

    Google Scholar 

  • Sorsa V (1988) Chromosome maps of Drosophilavols 1 and 2. CRC Press, Boca Raton

    Google Scholar 

  • Spradling AC (1986) P element-mediated transformation. In: Roberts DB (ed) Drosophila:a practical approach. IRL Press, Oxford, pp 175–197

    Google Scholar 

  • Spradling AC, Rubin GM (1982) Transposition of cloned P elements into Drosophilagerm line chromosomes. Science 218:341–347

    PubMed  CAS  Google Scholar 

  • Stewart B, Merriam JR (1980) Dosage compensation. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophilavol 2d. Academic Press, London, pp 107–140

    Google Scholar 

  • Sturtevant AH (1919) Inherited linkage variations in the second chromosome. Carnegie Inst Wash Publ 278:305–341

    Google Scholar 

  • Sturtevant AH, Beadle GW (1936) The relations of inversions in the X chromosome of Drosophila melanogasterto crossing over and disjunction. Genetics 21:554–604

    PubMed  CAS  Google Scholar 

  • Sved JA (1976) Hybrid dysgenesis in Drosophila melanogaster:a possible explanation in terms of spatial organization of chromosomes. Aust J Biol Sci 29:375–388

    PubMed  CAS  Google Scholar 

  • Valencia RM (1970) A cytogenetic study of radiation damage in entire genomes of Drosophila.Mutat Res 10:207–219

    PubMed  CAS  Google Scholar 

  • Wilson C, Pearson RK, Bellen HJ, O’Kane CJ, Grossnikiaus U, Gehring WJ, (1989) P-element- mediated enhancer detection: an efficient method for isolating and characterizing develop- mentally regulated genes in Drosophila.Genes Dev 3:1301–1313

    PubMed  CAS  Google Scholar 

  • Wilson C, Bellen HJ, Gehring WJ (1990) Position effect on eukaryotic gene expression. Annu Rev Cell Biol 6:679–714

    PubMed  CAS  Google Scholar 

  • Zink B, Paro R (1989) In vivo binding pattern of a trans-regulator of homeotic genes in Drosophila melanogaster.Nature 337:468–471

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hofmann, A., Korge, G. (1993). Polytene Chromosomes in Mutagenesis. In: Obe, G. (eds) Advances in Mutagenesis Research. Advances in Mutagenesis Research, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77466-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77466-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77468-3

  • Online ISBN: 978-3-642-77466-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics