Skip to main content

Mechanism of Induced Mutagenesis by Ultraviolet Light in Escherichia coli

  • Chapter
Advances in Mutagenesis Research

Part of the book series: Advances in Mutagenesis Research ((MUTAGENESIS,volume 4))

  • 58 Accesses

Abstract

The genetic prosperity of organisms is dependent on the preservation of their genome. To that aim living cells require a reliable mechanism of replication. Thus, it is not surprising that error frequencies of replication are generally only 10−9 to 10−10 per replicated nucleotide (for a review, see Echols and Goodman 1991). On the other hand, many physical and chemical agents in our environment can jeopardize the genetic information by the formation of lesions in the DNA that may block DNA replication or cause changes in its sequence (mutations). Nevertheless, organisms have developed an important diversity in enzymatic pathways for the removal or tolerance of DNA damage (for a comprehensive review, see Friedberg 1985; Sedgwick 1986). In some instances when error-free repair is not possible or fails, the mechanisms of tolerance may allow sequence changes, leading to mutations that generate variability, thus making evolution possible. Without versatile mechanisms that permit mutations to occur, organisms might never have existed as we know them today, or might have become extinct a long time ago due to the inability to cope with certain forms of strong selective pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad SI, van Sluis CA (1987) Inducible DNA polymerase I synthesis in a UV hyper-resistant mutant of Escherichia coli. Mutat Res 190:77–81

    Article  PubMed  CAS  Google Scholar 

  • Armengod ME, Blanco M (1978) Influence of the recF143 mutation of Escherichia coli K12 on prophage lambda induction. Mutat Res 52:37–37

    Article  PubMed  CAS  Google Scholar 

  • Banerjee SK, Borden A, Christensen RB, LeClerc JE, Lawrence CW (1990) SOS-dependent replication past a single trans-syn T-T cyclobutane dimer gives a different mutation spectrum and increased error rate compared with replication past this lesion in uninduced cells. J Bacteriol 172:2105–2122

    PubMed  CAS  Google Scholar 

  • Banerjee SK, Christensen RB, Lawrence CW, Leclerc JE (1988) Frequency and spectrum of mutations by a single cis-syn thymine-thymine cyclobutane dimer in a single-stranded vector. Proc Natl Acad Sci USA 85:8141–8145

    Article  PubMed  CAS  Google Scholar 

  • Barbacid M (1986) Mutagens, oncogenes and cancer. Trends Genet 2:188–192

    Article  Google Scholar 

  • Bates H, Bridges BA (1991) Mutagenic DNA repair in Escherichia coli. XIX. On the role of RecA protein in ultraviolet light mutagenesis. Biochemie 73:485–489

    Article  CAS  Google Scholar 

  • Bates H, Randall SK, Rayssiguier C, Bridges BA, Goodman MF, Radman M (1989) Spontaneous and UV mutagenesis in Escherichia coli K-12 strains with altered or absent DNA polymerase I. J Bacteriol 171:2480–2484

    PubMed  CAS  Google Scholar 

  • Blanco M, Herrera G, Collado P, Rebollo JE, Botella LM (1982) Influence of recA protein on induced mutagenesis. Biochemie 64:633–636

    Article  CAS  Google Scholar 

  • Bockrath R (1989) Streptomycin-resistant and dependent mutants ofE. coli: possible indicators of two important types of DNA alteration by UV mutagenesis. Mutagenesis 4:78–79

    Article  PubMed  CAS  Google Scholar 

  • Bockrath R, Hanawalt PC (1980) Ultraviolet light induction of recA protein in a recB uvrB mutant of Escherichia coli. J Bacteriol 143:1025–1028

    PubMed  CAS  Google Scholar 

  • Bockrath R, Mosbaugh P (1986) Mutation probe of gene structure in E. coli: suppressor mutations in the seven-tRNA operon. Mol Gen Genet 204:457–462

    Article  CAS  Google Scholar 

  • Bockrath R, Ruiz-Rubio M, Bridges BA (1987) Specificity of mutation by UV light and delayed photoreversal in umuC-defective Escherichia coli K-12: a targeting intermediate at pyrimidine dimers. J Bacteriol 169:1410–1416

    PubMed  CAS  Google Scholar 

  • Bonner CA, Hays S, McEntee K, Goodman MF (1990) DNA polymerase II is encoded by the DNA damage inducible dinA gene of Escherichia coli. Proc Natl Acad Sci USA 87:7663–7667

    Article  PubMed  CAS  Google Scholar 

  • Bonner C, Randall SK, Rayssiguier C, Radman M, Eritjia R, Kaplan BE, McEntee K, Goodman MF (1988) Purification and characterization of an inducible Escherichia coli DNA polymerase capable of insertion and bypass at abasic lesions in DNA. J Biol Chem 263:18946–18952

    PubMed  CAS  Google Scholar 

  • Branderburger A, Godson GN, Radman M, Glickman BW, van Sluis CA, Doubleday OP (1981) Radiation-induced base substitution mutagenesis in single-stranded DNA phage Ml3. Nature 194:180–182

    Article  Google Scholar 

  • Brash DE, Haseltine WA (1982) UV-induced mutation hotspots occur at DNA damage hotspots. Nature 298:189–192

    Article  PubMed  CAS  Google Scholar 

  • Brash DE, Haseltine WA (1985) Photoreactivation of Escherichia coli reverses umuC induction by UV light. J Bacteriol 163:460–463

    PubMed  CAS  Google Scholar 

  • Brash DE, Franflin WA, Sancar GB, Sancar A, Haseltine WH (1985) Escherichia coli DNA photolyase reverses cyclobutane pyrimidine dimers but not pyrimidine-pyrimidine (6–4) photo- products. J Biol Chem 260:11438–11441

    Google Scholar 

  • Bridges BA (1977) Recent advances in basic mutation research. Mutat Res 44:149–164

    Article  PubMed  CAS  Google Scholar 

  • Bridges BA (1988) Mutagenic DNA repair in Escherichia coli XVI. Mutagenesis by ultraviolet light plus delayed photoreversal in recA strains. Mutat Res 198:343–350

    Article  PubMed  CAS  Google Scholar 

  • Bridges BA Ultraviolet light mutagenesis in bacteria: the possible role of a DNA polymerase III complex lacking proofreading exonuclease. In Kappas A (ed) Mechanism of environmental mutagenesis-carcinogenesis. Plenum, New York (in press)

    Google Scholar 

  • Bridges BA, Bates H (1990) Mutagenic DNA repair in Escherichia coli XVIII. Involvement of DNA polymerase III a-subunit (DnaE) protein in mutagenesis after exposure to UV light. Mutagenesis 5:31–38

    Article  PubMed  Google Scholar 

  • Bridges BA, Bates H, Sharif F (1989) Polymerases and UV mutagenesis in Escherichia coli. Genome 31:572–577

    Article  PubMed  CAS  Google Scholar 

  • Bridges BA, Dennis RE, Munson RJ (1967) Differential induction and repair of ultraviolet leading to time reversions and external suppressor mutations of an ochre codon in Escherichia coli B/r WP2. Genetics 57:897–908

    PubMed  CAS  Google Scholar 

  • Bridges BA, Mottershead RP, Sedgwick SG (1976) Mutagenic repair in Escherichia coli III. Requirement for a function of DNA polymerase III in ultraviolet light mutagenesis. Mol Gen Genet 144:53–58

    CAS  Google Scholar 

  • Bridges BA, Woodgate R (1984) Mutagenic repair in Escherichia coli X. The umuC gene product may be required for replication past pyrimidine dimers but not for coding error in UV mutagenesis. Mol Gen Genet 196:364–366

    Article  PubMed  CAS  Google Scholar 

  • Bridges BA, Woodgate R (1985) Mutagenic repair in Escherichia coli: products of the recA gene and of the umuD and umuC genes act at different steps in UV-induced mutagenesis. Proc Natl Acad Sci USA 82:4193–4197

    Article  PubMed  CAS  Google Scholar 

  • Bridges BA, Woodgate R, Ruiz-Rubio M, Sharif F, Sedgwick SG, Hubscher U (1987) Current understanding of UV-induced base pair substitution mutation in E. coli with particular reference to the DNA polymerase III complex. Mutat Res 181:219–226

    Article  PubMed  CAS  Google Scholar 

  • Bridges BA, Sharif F (1986) Mutagenic DNA repair in Escherichia coli XII. Ultraviolet mutagenesis in excision proficient umuC and lexA (ind ”) bacteria as revealed by delayed photoreversal. Mutagenesis 1:111–117

    Article  PubMed  CAS  Google Scholar 

  • Brotcorne-Lannoye A, Maenhaut-Michel G, Radman M (1985) Involvement of DNA polymerase III in UV-induced mutagenesis of bacteriophage lambda. Mol Gen Genet 199:64–69

    Article  CAS  Google Scholar 

  • Bryan SK, Moses RE (1984) Map location of the pcbA mutation and physiology of the mutants. J Bacteriol 158:216–221

    PubMed  CAS  Google Scholar 

  • Burckhardt SE, Woodgate R, Scheuermann RH, Echols H (1988) UmuD mutagenesis protein of Escherichia coli: overproduction, purification, and cleavage by RecA. Proc Natl Acad Sci USA 85:1811–1815

    Article  PubMed  CAS  Google Scholar 

  • Caillet-Fauquet P, Defais M, Radman M (1977) Molecular mechanisms of induced mutagenesis. Replication in vivo of bacteriophage ФX174 single-stranded, ultraviolet light-irradiated DNA in intact and irradiated host cells. J Mol Biol 117:95–102

    Article  CAS  Google Scholar 

  • Cairns J, Overbaugh J, Miller S (1988) The origin of mutants. Nature 335:142–145

    Article  PubMed  CAS  Google Scholar 

  • Christensen JR, LeClerc JE, Tata PV, Christensen RB, Lawrence CW (1988) UmuC function is not essential for the production of all targeted lacl mutations induced by ultraviolet light. J Mol Biol 203:635–641

    Article  PubMed  CAS  Google Scholar 

  • Coulondre C, Miller JH (1977) Genetic studies of the lac repressor. IV. Mutagenic specificity in the lacl gene of E. coli. J Mol Biol 117:577–606

    Article  PubMed  CAS  Google Scholar 

  • Dimpfl J, Echols H (1989) Duplication mutagenesis as an SOS response in E. coli: enhanced duplication formation by a constitutively-activated RecA. Genetics 123:255–260

    PubMed  CAS  Google Scholar 

  • Doudney CO (1971) Deoxyribonucleic acid replication in UV-damaged bacteria revisited. Mutat Res 12:121–128

    Article  PubMed  CAS  Google Scholar 

  • Doudney CO (1976) Mutation in ultraviolet light-damaged microorganisms. In: Wang SY (ed) Photochemistry and photobiology of nucleic acids, vol II. Academic Press, New York, pp 309–374

    Google Scholar 

  • Dutreix M, Moreau PL, Bailone A, Galibert F, Battista JR, Walker GC, Devoret R (1989) New recA mutations that dissociate the various RecA protein activities inEscherichia coli provide evidence for an additional role for RecA protein in UV mutagenesis. J Bacteriol 171:2415–2423

    PubMed  CAS  Google Scholar 

  • Echols H (1982) Mutation rate: some biological and biochemical considerations. Biochemie 64:571–575

    Article  CAS  Google Scholar 

  • Echols H, Goodman MF (1990) Mutation induced by DNA damage: a many protein affair. Mutat Res 236:301–311

    PubMed  CAS  Google Scholar 

  • Echols H, Goodman MF (1991) Fidelity mechanism in DNA replication. Annu Rev Biochem 60:477–511

    Article  PubMed  CAS  Google Scholar 

  • Egushi Y, Ogawa T, Ogawa H (1988) Cleavage of bacteriophage 080 cl repressor by RecA protein. J Mol Biol 202:565–573

    Article  Google Scholar 

  • Eisenstadt E (1988) SOS mutagenesis in Escherichia coli occurs primarily, perhaps exclusively at sites of DNA damage. In: Moses RE, Summers WC (eds) DNA replication and mutagenesis. American Society for Microbiology, Washington DC, pp 403–409

    Google Scholar 

  • Elespuru RK (1987) Inducible responses to DNA damage in bacteria and mammalian cells. Environ Mol Mutagen 10:97–116

    Article  CAS  Google Scholar 

  • Elledge SJ, Walker GC (1983) Proteins required for ultraviolet light and chemical mutagenesis: identification of the products of the umuC locus of Escherichia coli. J Mol Biol 164:175–192

    Article  CAS  Google Scholar 

  • Ellison MJ, Childs JD (1981) Pyrimidine dimers induced in Escherichia coli DNA by ultraviolet radiation present in sunlight. Photochem Photobiol 34:465–469

    PubMed  CAS  Google Scholar 

  • Ennis DG, Ossanna N, Mount DW (1989) Genetic separation of Escherichia coli recA functions for SOS mutagenesis and repressor cleavage. J Bacteriol 171:2533–2541

    PubMed  CAS  Google Scholar 

  • Fersht AR, Knill-Jones JW (1983) Contribution of 3’-5’ exonuclease activity of DNA polymerase III from Escherichia coli to specificity. J Mol Biol 165:669–682

    Article  CAS  Google Scholar 

  • Fix D, Bockrath R (1983) Targeted mutation at cytosine-containing pyrimidine dimers: Studies in E. coli B/r with acetophenone and 313 nm light. Proc Natl Acad Sci USA 80:4446–4449

    Article  PubMed  CAS  Google Scholar 

  • Foster PL, Eisenstadt E, Cairns J (1982) Random component in mutagenesis. Nature 299:365–367

    Article  PubMed  CAS  Google Scholar 

  • Foster PL, Sullivan AD, Franklin SB (1989) Presence of the dnaQ-rnh divergent transcriptional unit on a multicopy plasmid inhibits induced mutagenesis in Escherichia coli. J Bacteriol 171: 3144–3151

    PubMed  CAS  Google Scholar 

  • Franklin WA, Haseltine WA (1986) The role of the (6–4) photoproduct in ultraviolet light-induced transition mutation inE. coli. Mutat Res 165:1–7

    PubMed  CAS  Google Scholar 

  • Friedberg E (1985) DNA repair. WH Freeman, New York

    Google Scholar 

  • Glickman BW (1990) Study of mutational specificity in the lacl gene of Escherichia coli as a window on the mechanism of mutation. Environ Mol Mutagen 16:48–54

    Article  CAS  Google Scholar 

  • Goodman MF, Petruska J, Boosalis MS, Bonner C, Randall SK, Sowers LC, Mendelman L (1988) Molecular mechanisms of DNA synthesis fidelity and isolation of a possible SOS-induced polymerase. In: Moses RE, Summers WC (eds) DNA replication and mutagenesis. American Society for Microbiology, Washington DC, pp 284–295

    Google Scholar 

  • Gordon AJE, Glickman BW (1988) Protein domain structure influences observed distribution of mutation. Mutat Res 69:1–12

    Google Scholar 

  • Griffin IV TJ, Kolodner RD (1990) Purification and preliminary characterization of the Escherichia coli K-12 RecF protein. J Bacteriol 172:6291–6299

    PubMed  CAS  Google Scholar 

  • Hagensee ME, Timme TL, Bryan SK, Moses RE (1987) DNA polymerase III of Escherichia coli is required for UV mutagenesis and ethylmetanesulfonate mutagenesis. Proc Natl Acad Sci USA 84:4195–4199

    Article  PubMed  CAS  Google Scholar 

  • Hall BG (1988) Adaptative evolution that requires multiple spontaneous mutation, I. Mutations involving an insertion sequence. Genetics 120:142–145

    Google Scholar 

  • Harm H (1976) Repair of UV-irradiated biological systems: photoreactivation. In: Wang SY (ed) Photochemistry and photobiology of nucleic acids, vol II. Academic Press, New York, pp 219–263

    Google Scholar 

  • Haseltine WA (1983) Site specificity of ultraviolet light induced mutagenesis. In: Friedberg EC, Bridges BA (eds) Cellular responses to DNA damages. Alan R Liss, New York, pp 3–22

    Google Scholar 

  • Hodges NDN, Moss SH, Davies DJG (1980) The role of pyrimidine dimers and non-dimer damage in the inactivation of Escherichia coli by UV radiation. Photochem Photobiol 31:571–577

    Article  PubMed  CAS  Google Scholar 

  • International Commission for Protection Against Environmental Mutagens and Carcinogens (1982) Committee 2 Final report: mutagenicity testing as an approach to carcinogens. Mutat Res 99:73–91

    Google Scholar 

  • Irbe RM, Morin LME, Oishi M (1981) Prophage (®80) induction in Escherichia coli K12 by specific deoxynucleotides. Proc Natl Acad Sci USA 78:138–142

    Article  PubMed  CAS  Google Scholar 

  • Iwasaki H, Nakata A, Walker GC, Shinagawa H (1990) The Escherichia coli polB gene, which encodes DNA polymerase II, is regulated by the SOS system. J Bacteriol 172:6268–6273

    PubMed  CAS  Google Scholar 

  • Jagger J (1976) Ultraviolet inactivation of biological systems. In: Wang SY (ed) Photochemistry and photobiology of nucleic acids, vol II. Academic Press, New York, pp 147–186

    Google Scholar 

  • Jonczyk P, Fijalkowska I, Ciesla Z (1988) Overproduction of the s subunit of DNA polymerase III counteracts the SOS mutagenic response of Escherichia coli. Proc Natl Acad Sci USA 85:9124–9127

    Article  PubMed  CAS  Google Scholar 

  • Kato T, Shinoura Y (1977) Isolation and characterization of mutants of Escherichia coli deficient in induction of mutations by ultraviolet light. Mol Gen Genet 156:121–131

    PubMed  CAS  Google Scholar 

  • Keiner A (1949) Photoreactivation of ultraviolet-irradiated Escherichia coli with special reference to the dose-reduction principle and to ultraviolet-induced mutations. J Bacteriol 58:511–522

    Google Scholar 

  • Kenyon CJ, Walker GC (1980) DNA-damaging agents stimulate gene expression at specific loci in Escherichia coll. Proc Natl Acad Sci USA 77:2819

    Article  PubMed  CAS  Google Scholar 

  • Koehl P, Burnouf D, Fuchs RPP (1989) Construction of plasmids containing a unique acetylamino- fluorene adduct located within a mutation hot spot: a new probe for frameshift mutagenesis. J Mol Biol 207:355–364

    Article  PubMed  CAS  Google Scholar 

  • Kondo S, Ichikawa H, Iwo K, Kato T (1970) Base-change mutagenesis and prophage induction in strains of Escherichia coli with different DNA repair capacities. Genetics 66:187–217

    PubMed  CAS  Google Scholar 

  • Kornberg A (1980) DNA replication. WH Freeman, San Francisco

    Google Scholar 

  • Kunz BA, Glickman BW (1984) The role of pyrimidine dimers as premutagenic lesions: a study of targeted vs. untargeted mutagenesis in the lacl gene of Escherichia coli. Genetics 106:347–364

    PubMed  CAS  Google Scholar 

  • Lackey D, Krauss SW, Linn S (1982) Isolation of an altered form of DNA polymerase I from Escherichia coli cells induced for RecA/LexA functions. Proc Natl Acad Sci USA 79:330–334

    Article  PubMed  CAS  Google Scholar 

  • Lackey D, Krauss SW, Linn S (1985) Characterization of DNA polymerase I, a form of DNA polymerase I found in Escherichia coli expressing SOS function. J Mol Biol 260:3178–3184

    CAS  Google Scholar 

  • Lawrence CW, Banerjee SK, Borden A, LeClerc JE (1990) T-T cyclobutane dimers are misinstructive rather than non-instructive, mutagenic lesions. Mol Gen Genet 222:166–168

    PubMed  CAS  Google Scholar 

  • Lawrence CW, Borden A, Banerjee SK, LeClerc JE (1990) Mutation frequency and spectrum resulting from a single abasic site in a single-stranded vector. Nucl Acids Res 18:2153–2157

    Article  PubMed  CAS  Google Scholar 

  • Lawrence C, Christensen R, Christensen JR, O’Brien T (1983) Mechanisms of UV mutagenesis in yeast and E coli. UCLA Symp Mol Cell Biol 11:511–520

    CAS  Google Scholar 

  • Lawrence CW, Christensen RB, Christensen JR (1985) Identity of the photoproduct that causes lacl mutations in UV-irradiated Escherichia coli. J Bacteriol 161:767–768

    PubMed  CAS  Google Scholar 

  • LeClerc JE, Christensen JR, Tata PV, Christensen RB, Lawrence CW (1988) Ultraviolet light induces different spectra of lacl sequence changes in vegetative and conjugating cells of Escherichia coli. J Mol Biol 203:619–633

    Article  CAS  Google Scholar 

  • LeClerc JE, Istock NL (1982) Specificity of UV mutagenesis in the lac promoter of M13/ac hybrid phage DNA. Nature 297:596–598

    Article  PubMed  CAS  Google Scholar 

  • LeClerc JE, Istock NL, Saran BR, Allen R (1984) Sequence analysis of ultraviolet-induced mutations in M131acZ hybrid phage DNA. J Mol Biol 180:217–237

    Article  PubMed  CAS  Google Scholar 

  • Lippke JA, Gordon LK, Brash DE, Haseltine WA (1981) Distribution of UV light-induced damage in a defined sequence of human DNA: detection of alkaline-sensitive lesion at pyrimidine nucleoside-cytidine sequences. Proc Natl Acad Sci USA 78:3388–3392

    Article  PubMed  CAS  Google Scholar 

  • Little JW (1984) Autodigestion of Lex A and phage lambda repressor. Proc Natl Acad Sci USA 81:1375–1379

    Article  PubMed  CAS  Google Scholar 

  • Little JW, Mount DW (1982) The SOS regulatory system ofEscherichia coli. Cell 29:11–22

    Article  PubMed  CAS  Google Scholar 

  • Livneh Z (1986) Replication of UV irradiated single-stranded DNA by DNA-polymerase III holoenzyme in Escherichia coli: evidence for the bypass of pyrimidine photodimers. Proc Natl Acad Sci USA 83:4599–4603

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Scheuermann RH, Echols H (1986) Capacity of RecA protein to bind preferentially to UV lesions and inhibit the editing subunit of DNA polymerase III: a possible mechanism of SOS- induced targeted mutagenesis. Proc Natl Acad Sci USA 83:619–623

    Article  PubMed  CAS  Google Scholar 

  • Luria SE, Delbrück M (1943) Mutation of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511

    PubMed  CAS  Google Scholar 

  • Maenhaut-Michel G, Caillet-Fauquet P (1984) Effect of umuC mutations on targeted and untargeted ultraviolet mutagenesis in bacteriophage 1. J Mol Biol 177:181–187

    Article  CAS  Google Scholar 

  • Magee TR, Kogoma T (1990) Requirement of RecBC enzyme and elevated level of activated RecA for induced stable DNA replication in Escherichia coli. J Bacteriol 172:1834–1839

    PubMed  CAS  Google Scholar 

  • Maki H, Maki S, Kornberg A (1988) DNA polymerase III holoenzyme of Escherichia coli IV. The holoenzyme is an asymmetric dimer with twin active sites. J Biol Chem 263:6570–6578

    PubMed  CAS  Google Scholar 

  • Miller JH (1983) Mutational specificity in bacteria. Annu Rev Genet 17:215–238

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1985) Mutational specificity of ultraviolet light. J Mol Biol 182:45–68

    Article  PubMed  CAS  Google Scholar 

  • Miller JH, Schmeissner U (1979) Genetic studies of the lac repressor. X. Analysis of missense mutations in the lacl gene. J Mol Biol 131:223–248

    Article  PubMed  CAS  Google Scholar 

  • Moore PD, Bose KK, Rabkin SD, Strauss BS (1981) Sites of termination of in vitro DNA synthesis on ultraviolet and N-acetylaminofluorene-treated ФX174 templates by procaryotic and eu- caryotic DNA polymerases. Proc Natl Acad Sci USA 78:110–114

    Article  PubMed  CAS  Google Scholar 

  • Moore PD, Strauss BS (1979) Sites of inhibition of in vitro DNA synthesis in carcinogen and UV treated FX 174 DNA. Nature 278:664–666

    Article  PubMed  CAS  Google Scholar 

  • Nagao M, Sugimura T, Matushima T (1978) Environmental mutagens and carcinogens. Annu Rev Genet 12:117–159

    Article  PubMed  CAS  Google Scholar 

  • Nohmi T, Battista JR, Dodson LA, Walker GC (1988) RecA-mediated cleavage activates UmuD for mutagenesis: mechanistic relationship between transcriptional derepression and posttransla- tional activation. Proc Natl Acad Sci USA 85:1816–1820

    Article  PubMed  CAS  Google Scholar 

  • Novick A, Szilard L (1949) Experiment on light-reactivation of ultra-violet inactivated bacteria. Proc Natl Acad Sci USA 83:619–623

    Google Scholar 

  • Osborn M, Person S, Phillips DJH, Funk F (1967) A determination of mutagen specificity in bacteria using nonsense mutants of bacteriophage T4. J Mol Biol 26:437–447

    Article  PubMed  CAS  Google Scholar 

  • Ossanna N, Paterson KR, Mount DW (1987) UV-inducible SOS response in Escherichia coli. Photochem Photobiol 45:905–908

    Article  PubMed  CAS  Google Scholar 

  • Paterson KR, Ossanna N, Thliveris AT, Ennis DG, Mount DW (1988) Derepression of specific genes promotes DNA repair and mutagenesis in Escherichia coli. J Bacteriol 170:1–4

    Google Scholar 

  • Patrick MH (1976) Physical and chemical properties of DNA. In: Wang SY (ed) Photochemistry and photobiology of nucleic acids, vol II. Academic Press, New York, pp 1–34

    Google Scholar 

  • Patrick MH, Rahn RO (1976) Photochemistry of DNA and polynucleotides: photoproducts. In: Wang SY (ed) Photochemistry and photobiology of nucleic acids, vol II. Academic Press, New York, pp 35–95

    Google Scholar 

  • Radman M (1975) SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. In: Hanawalt P, Setlow RB (eds) Molecular mechanism for repair of DNA, Part A. Plenum, New York, pp 355–367

    Google Scholar 

  • Rahn RO, Patrick MH (1976) Photochemistry of DNA; secondary structure, photosensitization, base substitution, and exogenous molecules. In: Wang SY (ed) Photochemistry and photobiology of nucleic acids, vol II. Academic Press, New York, pp 97–145

    Google Scholar 

  • Roberts RB, Aldous E (1949) Recovery from ultraviolet irradiation in Escherichia coli. J Bacteriol 57:363–375

    CAS  Google Scholar 

  • Rosenberg M, Echols H (1990) Differential recognition of ultraviolet lesions by RecA protein. J Biol Chem 265:20641–20645

    PubMed  CAS  Google Scholar 

  • Ruiz-Rubio M, Bockrath R (1989) On the possible role of cytosine deamination in delayed photoreversal mutagenesis targeted at thymine-cytosine dimers in Escherichia coli. Mutat Res 210:93–102

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Rubio M, Bridges BA (1987) Mutagenic DNA repair in Escherichia coli XIV. Influence of two DNA polymerase III mutation alleles on spontaneous and UV mutagenesis. Mol Gen Genet 208:542–548

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Rubio M, Woodgate R, Bridges BA, Herrera G, Blanco M (1986) New role for photoreversible pyrimidine dimer in induction of prototrophic mutations in excision-deficientEscherichia coli by UV light. J Bacteriol 166:1141–1143

    PubMed  CAS  Google Scholar 

  • Ruiz-Rubio M, Yamamoto K, Bockrath R (1988) An in vivo complex with DNA photolyase blocks UV mutagenesis targeted at a thymine-cytosine dimer in Escherichia coli. J Bacteriol 170:5371–5374

    PubMed  CAS  Google Scholar 

  • Salles B, Defais M (1984) Signal of induction of recA protein in E. coli. Mutat Res 131:53–59

    PubMed  CAS  Google Scholar 

  • Sancar GB (1990) DNA photolyases: physical properties, action mechanism and roles in dark repair. Mutat Res 236:147–160

    PubMed  CAS  Google Scholar 

  • Sargentini NJ, Smith KC (1988) Genetic and phenotypic analysis indicating occurrence of the recN262 and radBlOl mutations at the same locus in Escherichia coli. J Bacteriol 170:2392–2394

    PubMed  CAS  Google Scholar 

  • Sassanfar M, Roberts JW (1990) Nature of the SOS-inducing signal in Escherichia coli: the involvement of DNA replication. J Mol Biol 212:79–96

    Article  PubMed  CAS  Google Scholar 

  • Schaaper RM, Dunn RL, Glickman BW (1987) Mechanism of ultraviolet-induced mutations. Mutational spectra in the Escherichia coli lacl gene for a wild-type and an excision repair- deficient strain. J Mol Biol 198:187–202

    Article  CAS  Google Scholar 

  • Scheuermann R, Echols H (1984) A separate editing exonuclease for DNA replication: the epsilon subunit of Escherichia coli DNA polymerase III holoenzyme. Proc Natl Acad Sci USA 81: 1141–1151

    Google Scholar 

  • Sedgwick SG (1986) Stability and change through DNA repair. In: Kirkwood TBL, Rosenberger RF, Galas DJ (eds) Accuracy in molecular processes. Chapman and Hall, London, pp 233–289

    Chapter  Google Scholar 

  • Setlow RB, Swenson PA, Carrier WL (1963) Thymine dimers and inhibition of DNA synthesis by ultraviolet radiation in cells. Science 142:1464–1466

    Article  PubMed  CAS  Google Scholar 

  • Sharif F, Bridges BA (1990) Mutagenic DNA repair in Escherichia coli XVII. Effect of temperature- sensitive DnaE proteins on the induction of streptomycin-resistant mutations by UV light. Mutagenesis 5: 31–34

    Article  PubMed  CAS  Google Scholar 

  • Shavitt O, Livneh Z (1989) The b subunit modulates bypass and termination at UV lesions during in vitro replication with DNA polymerase III holoenzyme of Escherichia coli. J Biol Chem 264:11275–11281

    PubMed  CAS  Google Scholar 

  • Shinagawa H, Iwasaki H, Kato T, Nakata A (1988) RecA protein-dependent cleavage of UmuD protein and SOS mutagenesis. Proc Natl Acad Sci USA 85:1806–1810

    Article  PubMed  CAS  Google Scholar 

  • Shinoura Y, Ise T, Kato T, Glickman BW (1983) umuC-Mediated misrepair mutagenesis in Escherichia coli: extent and specificity of SOS mutagenesis. Mutat Res 111:51–59

    Google Scholar 

  • Shwartz H, Shavitt O, Livneh Z (1988) The role of exonucleolytic processing and polymerase-DNAassociation in bypass of lesions during replication in vitro. Significance for SOS-targeted mutagenesis. J Biol Chem 262:10518–10523

    Google Scholar 

  • Simic D, Vukovic-Gacic B, Knezevic-Vukcevic J (1990) Participation of rec genes of Escherichia coli K12 in W-reactivation of UV-irradiated phage X. Mutat Res 243:159–164

    Article  PubMed  CAS  Google Scholar 

  • Slater SC, Maurer R (1991) Requirements for bypass of UV-indueed lesions in single-stranded DNA of bacteriophage ФX174 in Salmonella typhimurium. Proc Natl Acad Sci USA 88:1251–1255

    Article  PubMed  CAS  Google Scholar 

  • Smith CL, Oishi M (1978) Early events and mechanism in the induction of bacterial SOS functions: analysis of the phage repressor inactivation process in vivo. Proc Natl Acad Sci USA 75: 1657–1661

    Article  PubMed  CAS  Google Scholar 

  • Sommer S, Leitao A, Bernardi A, Bailone A, Devoret R (1991) Introduction of a UV-damaged replicon into a recipient cell is not a sufficient condition to produce a SOS-inducing signal. Mutat Res 254:107–117

    PubMed  CAS  Google Scholar 

  • Steinborn G (1978) Uvm mutants of Escherichia coli K12 deficient in UV mutagenesis. I. Isolation of uvm mutants and their phenotypical characterization in DNA repair and mutagenesis. Mol Gen Genet 165:87–93

    Article  PubMed  CAS  Google Scholar 

  • Sweasy JB, Witkin EM, Sinha N, Roegner-Maniscalco V (1990) RecA protein of Escherichia coli has a third essential role in SOS mutator activity. J Bacteriol 172:3030–3036

    PubMed  CAS  Google Scholar 

  • Takano K, Nakabeppa Y, Maki H, Horiuchi T, Sekiguchi M (1986) Structure and function of dnaQ and mutD mutators of Escherichia coli. Mol Gen Genet 205:9–13

    Article  PubMed  CAS  Google Scholar 

  • Tessman I (1985) UV-induced mutagenesis of phage SI3 occur in the absence of the RecA and UmuC protein of Escherichia coli. Proc Natl Acad Sci USA 82:6614–6618

    Article  PubMed  CAS  Google Scholar 

  • Thorns B, Wackernagel W (1987) Regulatory role of recF in the SOS response of Escherichia coli: impaired induction of SOS genes by UV irradiation and nalidixic acid in a recF mutant. J Bacteriol 169:1731–1736

    Google Scholar 

  • Van Houten B (1990) Nucleotide excision repair in Escherichia coli. Microbiol Rev 54:18–51

    PubMed  Google Scholar 

  • Verma M, Moffat KG, Egan JB (1989) UV irradiation inhibits initiation of DNA replication from oriC in Escherichia coli. Mol Gen Genet 216:446–454

    Article  PubMed  CAS  Google Scholar 

  • Villani G, Boiteux S, Radman M (1978) Mechanism of ultraviolet-induced mutagenesis: extent and fidelity of in vitro DNA synthesis on irradiated templates. Proc Natl Acad Sci USA 75:3037–3041

    Article  PubMed  CAS  Google Scholar 

  • Walker GC (1984) Mutagenesis and inducible responses to deoxyribonucleic and damage in Escherichia coli. Microbiol Rev 48:60–93

    PubMed  CAS  Google Scholar 

  • Walker GC (1985) Inducible DNA repair systems. Annu Rev Biochem 54:425–457

    Article  PubMed  CAS  Google Scholar 

  • Walker GC (1987) The SOS response of Escherichia coli. In: Neidhart FC (ed)Escherichia coli and Salmonella typhimurium: cellular and molecular biology. American Society for Microbiology, Washington DC, pp 1346–1357

    Google Scholar 

  • Walker GC, Elledge SJ, Kenyon CJ, Kraeger JH, Perry KL (1982) Mutagenesis and other responses induced by DNA damage in Escherichia coli. Biochimie 64:607–610

    CAS  Google Scholar 

  • Wang SY (1976) Introductory concepts for photochemistry of nucleic acids. In: Wang SY (ed) Photochemistry and photobiology of nucleic acids, vol I. Academic Press, New York, pp 1–21

    Google Scholar 

  • Welch MM, McHenry CS (1982) Cloning and identification of the product of the dnaE gene of Escherichia coli. J Bacteriol 152:351–356

    PubMed  CAS  Google Scholar 

  • Witkin EM (1956) Time, temperature and protein synthesis: a study of ultraviolet-induced mutation in bacteria. Cold Spring Harbor Symp Quant Biol 21:123–140

    PubMed  CAS  Google Scholar 

  • Witkin EM (1967) Mutation-proof and mutation-prone modes of survival in derivatives of Escherichia coli B differing in sensitivity to ultraviolet light. Brookhaven Symp Biol 20:17–55

    Google Scholar 

  • Witkin EM (1976) Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli. Bacteriol Rev 40:869–907

    PubMed  CAS  Google Scholar 

  • Witkin EM (1989) Ultraviolet mutagenesis and the SOS response inEscherichia coli: A personal perspective. Environ Mol Mutagen 16:30–34

    Article  Google Scholar 

  • Witkin EM, George DL (1973) Ultraviolet mutagenesis in pol A and uvrA polA derivatives of Escherichia coli B/r: evidence for an inducible error-prone repair system. Genetics 73(Suppl): 91–108

    PubMed  Google Scholar 

  • Witkin EM, Wermundsen IE (1978) Targeted and untargeted mutagenesis by various inducers of SOS functions inEscherichia coli. Cold Spring Harbor Symp Quant Biol 48:293–295

    Google Scholar 

  • Wood R (1985) Pyrimidine dimers are not the principal pre-mutagenic lesions induced in lambda phage DNA by ultraviolet light. J Mol Biol 184:577–585

    Article  CAS  Google Scholar 

  • Wood RD, Hutchinson F (1984) Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli host cells irradiated with ultraviolet light. J Mol Biol 173:293–305

    Article  CAS  Google Scholar 

  • Wood RD, Hutchinson F (1987) Ultraviolet light-induced mutagenesis in the E. coli chromosome: sequence of mutants in the cl gene lambda lysogen. J Mol Biol 193:637–641

    Article  CAS  Google Scholar 

  • Wood RD, Skopek TR, Hutchinson F (1984) Changes in DNA base sequence induced by targeted mutagenesis of lambda phage by ultraviolet light. J Mol Biol 173:273–291

    Article  PubMed  CAS  Google Scholar 

  • Woodgate R, Bridges BA, Herrera G, Blanco M (1987) Mutagenic DNA repair in Escherichia coli XIII. Proofreading exonuclease of DNA polymerase is not operational during UV mutagenesis. Mutat Res 183:31–37

    PubMed  CAS  Google Scholar 

  • Woodgate R, Bridges BA, Kelly C (1989) Non-mutability by ultraviolet light in uvrD recB derivatives of Escherichia coli WP2 uvrA is due to inhibition of RecA protein activation. Mutat Res 226:141–144

    Article  PubMed  CAS  Google Scholar 

  • Woodgate R, Rajagopalan M, Lu C, Echols H (1989) UmuC mutagenesis protein of Escherichia coli: purification and interaction with UmuD’. Proc Natl Acad Sci USA 86:7301–7305

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruiz-Rubio, M. (1993). Mechanism of Induced Mutagenesis by Ultraviolet Light in Escherichia coli . In: Obe, G. (eds) Advances in Mutagenesis Research. Advances in Mutagenesis Research, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77466-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77466-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77468-3

  • Online ISBN: 978-3-642-77466-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics