Skip to main content

Formation of 8-Hydroxyguanine by Oxidative DNA Damage, Its Repair and Its Mutagenic Effects

  • Chapter
Advances in Mutagenesis Research

Part of the book series: Advances in Mutagenesis Research ((MUTAGENESIS,volume 4))

Abstract

In 1982 the analysis of DNA adducts was carried out, particularly guanine adducts, as one approach to the identification of direct-acting mutagens present in broiled foods and environmental materials. On analysis of adduct formation by heated glucose, as a model of broiled foods, glyoxal-Gua and 8-hydroxy-Gua (oh8Gua)1 adducts were detected as major products (Kasai, et al. 1984a; Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelman R, Saul RL, Ames BN (1988) Oxidative damage to DNA: relation to species metabolic rate and life span. Proc Natl Acad Sci USA 85:2706–2708

    Article  PubMed  CAS  Google Scholar 

  • Aida M, Nishimura S (1987) An ab initio molecular orbital study on the characteristics of 8-hydroxyguanine. Mutat Res 192:83–89

    Article  PubMed  CAS  Google Scholar 

  • Basu AK, Loechler EL, Leadon SA, Essigmann JM (1989) Genetic effects of thymine glycol; site- specific mutagenesis and molecular modeling studies. Proc Natl Acad Sci USA 86:7677–7681

    Article  PubMed  CAS  Google Scholar 

  • Cabrera M, Nghiem Y, Miller JH (1988) mut M, a second mutator locus inEscherichia coli that generates G ● C→T ● A transversions. J Bacteriol 170:5405–5407

    PubMed  CAS  Google Scholar 

  • Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G → T and A → C substitutions. J Biol Chem 267: 166–172

    PubMed  CAS  Google Scholar 

  • Chung MH, Kasai H, Jones DS, Inoue H, Ishikawa H, Ohtsuka E, Nishimura S (1991a) An endonuclease activity of Escherichia coli that specifically removes 8-hydroxyguanine residues from DNA. Mutat Res 254:1–12

    PubMed  CAS  Google Scholar 

  • Chung MH, Kim HS, Ohtsuka E, Kasai H, Yamamoto F, Nishimura S (1991b) An endonuclease activity in human polymorphonuclear neutrophils that removes 8-hydroxyguanine residues from DNA. Biochem Biophys Res Commun 178:1422–1478

    Article  Google Scholar 

  • Culp SJ, Cho BP, Kadlubar FF, Evans FE (1989) Structural and conformational analyses of 8-hydroxy-2’-deoxyguanosine. Chem Res Toxicol 2:416–422

    Article  PubMed  CAS  Google Scholar 

  • Demple B, Johnson A, Fung D (1986) Exonuclease III and endonuclease IV remove 3 blocks from DNA synthesis primers in H202-damagedEscherichia coli. Proc Natl Acad Sci USA 83:7731–7735

    Article  PubMed  CAS  Google Scholar 

  • Diuric Z, Potter DW (1990) Oxidative DNA damage by 1.6-dinitropyrene in vivo. Proc 81st Annu Meet AACR 31:146

    Google Scholar 

  • Dizdaroglu M (1985) Formation of an 8-hydroxyguanine moiety in deoxyribonucleic acid on γ-irradiation in aqueous solution. Biochemistry 24:4476–4481

    Article  PubMed  CAS  Google Scholar 

  • Fiala ES, Conaway CC, Mathis JE (1989) Oxidative DNA and RNA damage in the liver of Sprague-Dawley rats treated with the hepatocarcinogen 2-nitropropane. Cancer Res 49:5518–5522

    PubMed  CAS  Google Scholar 

  • Floyd RA, Watson J J, Wong PK, Altmiller DH, Rickard RC (1986) Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mechanisms of formation. Free Rad Res Commun 1:163–172

    Article  CAS  Google Scholar 

  • Fraga CG, Shigenaga MK, Park JW, Degan P, Ames BN (1990) Oxidative damage to DNA during aging:8-hydroxy-2’-deoxyguanosine in rat organ DNA and urine. Proc Natl Acad Sci USA 87:4533–4537

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa M, Ogawa T, Sugiyama S, Tanaka M, Ozawa T (1991a) Massive conversion of guanosine to 8-hydroxyguanosine in mouse liver mitochondrial DNA by administration of azidothymidine. Biochem Biophys Res Commun 176:87–93

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa M, Torii K, Sugiyama S, Tanaka M, Ozawa T (1991b) Age-associated accumulation of 8-hydroxydeoxyguanosine in mitochondrial DNA of human diaphragm. Biochem Biophys Res Commun 179:1023–1029

    Article  PubMed  CAS  Google Scholar 

  • Hinrichsen LI, Floyd RA, Sudilovsky O (1990) Is 8-hydroxydeoxyguanosine a mediator of carcinogenesis by a choline-devoid diet in the rat liver. Carcinogenesis, 11:1879–1881

    Article  PubMed  CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC (1991) p53 Mutations in human cancers. Science 253:49–53

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Nishimura S (1983) Hydroxylation of the C-8 position of deoxyguanosine by reducing agents in the presence of oxygen. Nucl Acids Res Symp Ser 12:165–167

    CAS  Google Scholar 

  • Kasai H, Nishimura S (1984a) Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents. Nucl Acids Res 12:2137–2145

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Nishimura S (1984b) DNA damage induced by asbestos in the presence of hydrogen peroxide. Gann 75:841–844

    PubMed  CAS  Google Scholar 

  • Kasai H, Nishimura S (1991) Formation of 8-hydroxydeoxyguanosine in DNA by oxygen radicals and its biological significance. In:Sies H (ed) Oxidative stress, oxidant and antioxidants. Academic Press, pp 99–116

    Google Scholar 

  • Kasai H, Hayami H, Yamaizumi Z, Saito H, Nishimura S (1984a) Detection and identification of mutagens and carcinogens as their adducts with guanosine derivatives. Nucl Acids Res 12:2127–2136

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Tanooka H, Nishimura S (1984b) Formation of 8-hydroxyguanine residues in DNA by X-irradiation. Gann 75:1037–1039

    PubMed  CAS  Google Scholar 

  • Kasai H, Crain PF, Kuchino Y, Nishimura S, Ootsuyama A, Tanooka H (1986) Formation of 8-hydroxyguanine moiety in cellular DNA by agents producing oxygen radicals and evidence for its repair. Carcinogenesis 7:1849–1851

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Nishimura S, Kurokawa Y, Hayashi H (1987a) Oral administration of the renal carcinogen, potassium bromate, specifically produces 8-hydroxydeoxyguanosine in rat target organ DNA. Carcinogenesis 8:1959–1961

    Article  PubMed  CAS  Google Scholar 

  • Kasai H, Nishimura S, Toriumi Y, Itai T, Iitaka Y (1987b) The crystal structure of 9-ethyl-8-hydroxyguanine. Bull Chem Soc Jpn 60:3799–3800

    Article  CAS  Google Scholar 

  • Kasai H, Okada Y, Nishimura S, Rao MS, Reddy JK (1989) Formation of 8-hydroxydeoxyguanosine in liver DNA of rats following long-term exposure to a peroxisome proliferator. Cancer Res 49:2603–2605

    PubMed  CAS  Google Scholar 

  • Kasprzak KS, Hernandez L (1989) Enhancement of hydroxylation and deglycosylation of 2’-deoxyguanosine by carcinogenic nickel compounds. Cancer Res 49:5964–5968

    PubMed  CAS  Google Scholar 

  • Kasprzak KS, Higinbotham K, Diwan BA, Perantoni AO, Rice JM (1990) Correlation of DNA base oxidation with the activation of K-ras oncogene in nickel-induced renal tumors. Free Rad Res Commun 9 (Suppl 1):172

    Google Scholar 

  • Kiyosawa H, Murata K, Aota M, Inoue H, Nakazawa K, Kasai H, Nishimura S (1989) Detection of 8-hydroxydeoxyguanosine in human lymphocyte DNA. In:Hayaishi O, Niki E, Kondo M, Yoshikawa T(eds) Medical biological and chemical aspects of free radicals. Elsevier Amsterdam, pp 1511–1512

    Google Scholar 

  • Kouchakdjian M, Bodepudi V, Shibutani S, Eisenberg M, Johnson F, Grollman AP, Patel DJ (1991) NMR structural studies of ionizing radiation adduct 7-hydro-8-oxydeoxyguanosine (8-oxo-7H- dG) opposite deoxyadenosine in a DNA duplex. 8-oxo-7H-dG(syn) dA(anti) alignment at lesion site. Biochemistry 30:1403–1412

    Article  PubMed  CAS  Google Scholar 

  • Kuchino Y, Mori F, Kasai H, Inoue H, Iwai S, Miura K, Ohtsuka E, Nishimura S (1987) Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and at adjacent residues. Nature 327:77–79

    Article  PubMed  CAS  Google Scholar 

  • Laval J, Boiteux S, O’Connor TR (1990) Physiological properties and repair of apurinic/sites and imidazole ring-opened guanines in DNA. Mutat Res 233:73–79

    Article  PubMed  CAS  Google Scholar 

  • Leanderson P, Soderkvist P, Tagesson C, Axelson O (1988) Formation of 8-hydroxydeoxyguanosine by asbestos and man made mineral fibres. Br J Ind Med 45:309–311

    PubMed  CAS  Google Scholar 

  • Levy DD, Teebor GW (1991) Site directed substitution of 5-hydroxymethyluracil for thymine in replicating øX-174am3 DNA via synthesis of 5-hydroxymethyl-2’-deoxyuridine-5’-triphosphate. Nucl Acids Res 19:3337–3343

    Article  PubMed  CAS  Google Scholar 

  • Maki H, Sekiguchi M (1992) Mut T protein specifically hydrolyzes a potent mutagenic substrate for DNA synthesis. Nature 355:273–275

    Article  PubMed  CAS  Google Scholar 

  • Meuth M (1990) The structure of mutation in mammalian cells. Biochim Biophys Acta 1032:1–17

    PubMed  CAS  Google Scholar 

  • Michaels ML, Pharm L, Cruz C, Miller JH(1991) Mut M, a protein that prevents G ●C → T ● A trans versions, is formidopyrimidine-DNA glycosylase. Nucl Acids Res 19:3629–3632

    Article  PubMed  CAS  Google Scholar 

  • Moriya M, Ou C, Bodepudi V, Johnson F, Takeshita M, Grollman AP (1991) Site-specific mutagenesis using a gapped duplex vector: a study of translesion synthesis past 8-oxodeoxyguanosine in E. coli. Mutat Res 254:281–288

    PubMed  CAS  Google Scholar 

  • Nair UJ, Floyd RA, Nair J, Bussachini V, Friesen M, Bartsch H (1987) Formation of reactive oxygen species and of 8-hydroxydeoxyguanosine in DNA in vitro with betel quid ingredients. Chem Biol Interact 63:157–169

    Article  PubMed  CAS  Google Scholar 

  • Nakae D, Yoshiji H, Maruyama H, Kinugasa T, Denda A, Konishi Y (1990) Production of both 8-hydroxydeoxyguanosine in liver DNA and y-glutamyl-transferase-positive hepatocellular lesions in rats given a choline-deficient, L-amino acid-defined diet. Jpn J Cancer Res 81:1081–1084

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Uesugi S, Ikehara M, Nishimura S, Kawase Y, Ishikawa H, Inoue H, Ohtsuka E (1991) NMR studies of a DNA containing 8-hydroxydeoxyguanosine. Nucl Acids Res 19:1407–1412

    Article  PubMed  CAS  Google Scholar 

  • Richter C, Park J-W, Ames BN (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc Natl Acad Sci USA 85:6465–6467

    Article  PubMed  CAS  Google Scholar 

  • Rosier J A, van Peteghem CH (1989) Peroxidative in vitro metabolism of diethylstilbestrol induces formation of 8-hydroxy-2’-deoxyguanosine. Carcinogenesis 10:405–406

    Article  PubMed  CAS  Google Scholar 

  • Shibutani S, Takeshita M, Grollman AP (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349:431–434

    Article  PubMed  CAS  Google Scholar 

  • Shigenaga MK, Gimeno CJ, Ames BN (1989) Urinary 8-hydroxy-2’-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proc Natl Acad Sci USA 86:9697–9701

    Article  PubMed  CAS  Google Scholar 

  • Shioya M, Wakabayashi K, Yamashita K, Nagao M, Sugimura T (1989) Formation of 8-hydroxydeoxyguanosine in DNA treated with facapentaene-12 and -14. Mutat Res 226:91–94

    Article  Google Scholar 

  • Takagi A, Sai K, Umemura T, Hasegawa R, Kurokawa Y, Kasai H (1989) Production of 8-hydroxydeoxyguanosine in rat liver DNA by oral administration of peroxisome proliferators. Igaku no Ayumi 149:65–66

    CAS  Google Scholar 

  • Tchou J, Kasai H, Shibutani S, Chung MH, Laval J, Grollman AP, Nishimura S (1991) 8-Oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci USA 88:4690–4694

    Article  PubMed  CAS  Google Scholar 

  • Umemura T, Sai K, Takagi A, Hasegawa R, Kurokawa Y (1990) Formation of 8-hydroxyguanosine (8-OH-dG) in rat kidney DNA after intraperitoneal administration of ferric nitrilotriacetate (Fe-NTA). Carcinogenesis 11:345–347

    Article  PubMed  CAS  Google Scholar 

  • Wood ML, Dizdaroglu M, Gajewski E, Essigmann JM (1990) Mechanistic studies of ionizing radiation and oxidative mutagenesis: genetic effects of a single 8-hydroxyguanine (7-hydro-8- oxoguanine) residue inserted at a unique site in a viral genome. Biochemistry 29:7024–7032

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto F, Kasai H, Chung MH, Ohtsuka E, Hori T, Nishimura S (1992) Ubiquitous presence in mammalian cells of enzymatic activity specifically cleaving 8-hydroxyguanine containing DNA. Jpn J Cancer Res (in press)

    Google Scholar 

  • Yanofsky C, Cox EC, Horn V (1966) The unusual mutagenic specificity of an E. coli mutator gene. Proc Natl Acad Sci USA 55:274–281

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kasai, H., Nishimura, S. (1993). Formation of 8-Hydroxyguanine by Oxidative DNA Damage, Its Repair and Its Mutagenic Effects. In: Obe, G. (eds) Advances in Mutagenesis Research. Advances in Mutagenesis Research, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77466-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77466-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77468-3

  • Online ISBN: 978-3-642-77466-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics