Skip to main content

Opioid Receptor-G Protein Interactions: Acute and Chronic Effects of Opioids

  • Chapter
Opioids

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 104 / 1))

Abstract

It has been accepted for several years that opioid action mediated through μ- and δ-type opioid receptors requires the interaction of the agonist- occupied receptor with a guanine nucleotide binding protein (G protein). Accumulating evidence suggests that a similar mechanism is an essential component of κ-type opioid receptor function. In this chapter, we will discuss the evidence supporting these conclusions and review similarities and differences between opioid receptor-G protein interactions and the functions of other G protein-linked receptor systems. The evidence that tolerance to opioid agonist actions and the development of dependence on opioid agonist after chronic exposure might also be related to modified interactions between receptor and G protein, and also to changes in the concentrations of individual forms of G proteins, will also be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian GK (1978) Tolerance of locus coeruleus neurons to morphine and suppression of withdrawal response by clonidine. Nature 276: 186–188

    PubMed  CAS  Google Scholar 

  • Aghajanian GK, Wang Y-Y (1986) Pertussis toxin blocks the outward currents evoked by opiate and α2-agonists in locus coeruleus neurons. Brain Res 371: 390–394

    PubMed  CAS  Google Scholar 

  • Asano T, Ogasawara N (1986) Uncoupling of γ-aminobutyric acid B receptors from GTP-binding proteins by N-ethylmaleimide: effect of N-ethylmaleimide on purified GTP-binding proteins. Mol Pharmacol 29: 244–249

    PubMed  CAS  Google Scholar 

  • Aston-Jones G, Ennis M, Pieribone VA, Nickel WT, Shipley MT (1986) The brain locus coeruleus: restricted afferent control of a broad efferent network. Science 234: 734–737

    PubMed  CAS  Google Scholar 

  • Attali B, Vogel Z (1989) Long-term opiate exposure leads to reduction of the α1-1subunit of GTP-binding proteins. J Neurochem 53: 1636–1639

    PubMed  CAS  Google Scholar 

  • Attali B, Saya D, Nah S-Y, Vogel Z (1989a) κ-Opiate agonists inhibit Ca2+ influx in rat spinal cord-dorsal root ganglion cocultures: involvement of a GTP-binding protein. J Biol Chem 264:347–353

    PubMed  CAS  Google Scholar 

  • Attali B, Saya D, Vogel Z (1989b) K-Opiate agonists inhibit adenylate cyclase and produce heterologous desensitization in rat spinal cord. J Neurochem 52: 360–369

    PubMed  CAS  Google Scholar 

  • Aub DL, Frey EA, Sekura RD, Cote TE (1986) Coupling of the thyrotropin-releasing hormone receptor to phospholipase C by a GTP-binding protein distinct from the inhibitory or stimulatory GTP binding proteins. J Biol Chem 261: 9333–9340

    PubMed  CAS  Google Scholar 

  • Barchfield CC, Medzihradsky F (1984) Receptor-mediated stimulation of brain GTPase by opiates in normal and dependent rats. Biochim Biophys Acta 121: 641–648

    Google Scholar 

  • Beitner-Johnson D, Nestler EJ (1991) Morphine and cocaine exert common chronic actions on tyrosine hydroxylase in dopaminergic brain reward regions. J Neurochem 57: 344–347

    PubMed  CAS  Google Scholar 

  • Bennett DB, Spain JW, Lakowski MB, Roth BL, Coscia CJ (1985) Stereospecific opiate binding sites occur in coated vesicles. J Neurosci 5: 3010–3015

    PubMed  CAS  Google Scholar 

  • Benovic JL, Strasse RH, Caron MG, Lefkowitz RJ (1986) β-Adrenergic receptor kinase: identification of a novel protein kinase that phosphorylates the agonist- occupied form of the receptor. Proc Natl Acad Sci USA 83:2797–2801

    PubMed  CAS  Google Scholar 

  • Birnbaumer L (1990) Transduction of receptor signal into modulation of effector activity by G proteins: the first 20 years or so. FASEB J 4: 3068–3078

    Google Scholar 

  • Bläsig J, Meyer G, Hollt V, Hengstenburg J, Dum J, Herz A (1979) Non-competitive nature of the antagonistic mechanism responsible for tolerance development to opiate-induced analgesia. Neuropharmacol 18: 473–481

    Google Scholar 

  • Blume A J (1978a) Interactions of ligands with opiate receptors of brain membranes; regulation by ions and nucleotides. Proc Natl Acad Sci USA 75: 1713–1717

    PubMed  CAS  Google Scholar 

  • Blume AJ (1978b) Opiate binding to membrane preparations of neuroblastoma X glioma hybrid cells NG 108–15: effects of ions and nucleotides. Life Sci 22: 1843–1852

    PubMed  CAS  Google Scholar 

  • Blume AJ, Lichtshtein D, Boone G (1979) Coupling of opiate receptors to adenylate cyclase: requirement for Na+ and GTP. Proc Natl Acad Sci USA 76: 5626–5630

    PubMed  CAS  Google Scholar 

  • Bolger GT, Sklonick P, Rice KC, Weisman BA (1988) Differential regulation of μ-opiate receptors in heroin- and morphine-dependent rats. FEBS Lett 234: 22–26

    PubMed  CAS  Google Scholar 

  • Brady LS, Herkenham M, Long JB, Rothman RB (1989) Chronic morphine increases μ-opiate receptor binding in rat brain: a quantitative autoradiographic study. Brain Res 477: 382–386

    PubMed  CAS  Google Scholar 

  • Burns DL, Hewlett EL, Moss J, Vaughan M (1983) Pertussis toxin inhibits encephalin stimulation of GTPase of NG 108–15 cells. J Biol Chem 258: 1435–1438

    PubMed  CAS  Google Scholar 

  • Cassel D, Selinger Z (1976) Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim Biophys Acta 252: 538–551

    Google Scholar 

  • Castanas E, Bourhim N, Giraud P, Boudouresque F, Cantau P, Oliver C (1985) Interaction of opiates with opioid binding sites in the bovine adrenal medulla: interaction with K sites. J Neurochem 45: 688–699

    PubMed  CAS  Google Scholar 

  • Chang K-J, Eckel RW, Blanchard SG (1982) Opioid peptides induce reduction of enkephalin receptors in cultures neuroblastoma cells. Nature 296: 446–448

    PubMed  CAS  Google Scholar 

  • Chang K-J, Blanchard SG, Cuatrecasas P (1983) Unmasking of magnesium- dependent high-affinity binding sites for [D-Ala2, D-Leu5] enkephalin after pre-treatment of brain membranes with guanine nucleotides. Proc Natl Acad Sci USA 80: 940–944

    PubMed  CAS  Google Scholar 

  • Chang K-J, Blanchard SG, Cuatrecasas P (1984) Benzomorphan sites are ligand recognition sites of putative ε-receptors. Mol Pharmacol 26: 484–488

    PubMed  CAS  Google Scholar 

  • Chavkin C, Goldstein A (1984) Opioid receptor reserve in normal and morphine- tolerant guinea pig ileum myenteric plexus. Proc Natl Acad Sci USA 81: 7253–7257

    PubMed  CAS  Google Scholar 

  • Chen G-C, Chalazonitis A, Shen K-F, Crain SM (1988) Inhibitor of cyclic AMP- dependent protein kinase blocks opioid-induced prolongation of the action potential of mouse sensory ganglion neurons in dissociated cell cultures. Brain Res 462: 372–377

    PubMed  CAS  Google Scholar 

  • Childers SR (1984) Interaction of opiate receptor binding sites and guanine nucleotide regulatory sites: selective protection from N-ethylmaleimide. J Pharmacol Exp Ther 230: 684–691

    PubMed  CAS  Google Scholar 

  • Childers SR, Snyder SH (1978) Guanine nucleotides differentiate agonist and antagonist interactions with opiate receptors. Life Sci 23: 759–762

    PubMed  CAS  Google Scholar 

  • Childers SR, Snyder SH (1980) Differential regulation by guanine nucleotides of opiate agonist and antagonist receptor interactions. J Neurochem 34: 583–593

    PubMed  CAS  Google Scholar 

  • Christie MJ, Williams JT, North RA (1987) Cellular mechanisms of opioid tolerance; studies in single brain neurons. Mol Pharmacol 32: 632–638

    Google Scholar 

  • Clark JA, Lui L, Price M, Hersh B, Edelson M, Pasternak GW (1989) Kappa opiate receptor multiplicity: evidence for two U50488-sensitive κ1 subtypes and a novel κ3 subtype. J Pharmacol Exp Ther 251: 461–468

    PubMed  CAS  Google Scholar 

  • Clark MJ, Medzihradsky F (1987) Coupling of multiple opioid receptors to GTPase following selective receptor alkylation in brain membranes. Neuropharmacology 26: 1763–1770

    PubMed  CAS  Google Scholar 

  • Clark MJ, Levenson SD, Medzihradsky F (1986) Evidence for coupling of the κ opioid receptor to brain GTPase. Life Sci 39: 1721–1727

    PubMed  CAS  Google Scholar 

  • Costa T, Herz A (1989) Antagonists with negative intrinsic activity at delta opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci USA 86: 7321–7325

    PubMed  CAS  Google Scholar 

  • Costa T, Aktories K, Schultz G, Wüster M (1983) Pertussis toxin decreases opiate receptor binding and adenylate inhibition in a neuroblastoma X glioma hybrid cell line. Life Sci 33 [Suppl 1]: 219–222

    PubMed  CAS  Google Scholar 

  • Costa T, Wüster M, Gramsch C, Herz A (1985) Multiple states of opioid receptor may modulate adenylate cyclase in intact neuroblastoma X glioma hybrid cells. Mol Pharmacol 28: 146–154

    PubMed  CAS  Google Scholar 

  • Costa T, Lang G, Gless C, Herz A (1990) Spontaneous association between opioid receptors and GTP-binding regulatory proteins in native membranes: specific regulation by antagonists and sodium. Mol Pharmacol 37: 383–394

    PubMed  CAS  Google Scholar 

  • Cox BM (1978) Multiple mechanisms in opiate tolerance. In: van Ree J, Terenius L (eds) Characteristics and functions of opioids. Elsevier /North-Holland, Amsterdam, pp 13–23

    Google Scholar 

  • Cox BM (1990) Drug tolerance and physical dependence. In: Pratt WB, Taylor P (eds) Principles of drug action: the basis of pharmacology. Churchill Livingstone, New York, pp 639–690

    Google Scholar 

  • Cox BM, Werling LL (1988) Regulation of norepinephrine release by opioids: role of noradrenergic pathways in opiate withdrawal. In: Illes P, Farsang C (eds) Regulatory roles of opioid peptides. VCH, Weinheim, pp 259–267

    Google Scholar 

  • Dingledine R, Valentino RJ, Bostock E, King ME, Chang K-J (1983) Down- regulation of δ but not μ opioid receptors in the hippocampal slice associated with loss of physiological response. Life Sci 33 [Suppl 1]: 333–336

    PubMed  CAS  Google Scholar 

  • Dum J, Meyer G, Hollt V, Herz A (1979) In vivo opiate binding unchanged in tolerant/dependent mice. Eur J Pharmacol 58: 453–460

    PubMed  CAS  Google Scholar 

  • Duman RS, Tallman JF, Nestler EJ (1988) Acute and chronic opiate-regulation of adenylate cyclase in brain: specific effects in locus coeruleus. J Pharmacol Exp Ther 246: 1033–1039

    PubMed  CAS  Google Scholar 

  • Frances B, Moisand C, Meunier J-C (1985) Na+ ions and Gpp ( NH) p selectively inhibit agonist interactions at K opioid receptor sites in rabbit and guinea-pig cerebellum membranes. Eur J Pharmacol 117: 223–232

    Google Scholar 

  • Frances B, Puget A, Moisand C, Meunier J-C (1990) Apparent precoupling of κ- but not μ-opioid receptors with a G protein in the absence of agonist. Eur J Pharmacol 189: 1–9

    PubMed  CAS  Google Scholar 

  • Frey E, Kebabian J (1984) A μ-opiate receptor in 7315c tumor tissue mediates inhibition of immunoreactive prolactin release and adenylate cyclase activity. Endocrinology 115: 1797–1804

    PubMed  CAS  Google Scholar 

  • Furchgott RF (1978) Pharmacological characterization of receptors: its relation to radioligand binding studies. Fed Proc 37: 115–120

    PubMed  CAS  Google Scholar 

  • Gairin JE, Botanch C, Cros J, Meunier J-C (1989) Binding of dynorphin A and related peptides to κ- and μ-opioid receptors: sensitivity to Na+ and Gpp ( NH)p. Eur J Pharmacol 172: 381–384

    Google Scholar 

  • Gintzler AR, Xu H (1991) Different G proteins mediate the opioid inhibition or enhancement of evoked [5-methionine] enkephalin release. Proc Natl Acad Sci USA 88: 4741–4745

    PubMed  CAS  Google Scholar 

  • Giordano AL, Nock B, Cicero TJ (1991) Antagonist-induced up-regulation of the putative epsilon opioid receptor in rat brain: comparison with kappa, mu and delta opioid receptors. J Pharmacol Exp Ther 255: 536–540

    Google Scholar 

  • Glossman H, Baukal AJ, Catt KJ (1974) Properties of angiotensin II receptors in bovine and rat adrenal cortex. J Biol Chem 249: 825–834

    Google Scholar 

  • Green DA, Clark RB (1982) Specific mucarinic-cholinergic desensitization in the neuroblastoma-glioma hybrid NG108-15. J Neurochem 39: 1125–1131

    PubMed  CAS  Google Scholar 

  • Griffin MT, Law P-Y, Loh HH (1985) Involvement of both inhibitory and stimulatory guanine nucleotide binding proteins in the expression of chronic opiate regulation of adenylate cyclase activity in NG108-15 cells. J Neurochem 45: 1585–1589

    PubMed  CAS  Google Scholar 

  • Guitart X, Nestler EJ (1989) Identification of morphine- and cyclic AMP-regulated phosphoproteins (MARPPs) in the locus coeruleus and other regions of rat brain: regulation by acute and chronic morphine. J Neurosci 9: 4371–4387

    PubMed  CAS  Google Scholar 

  • Guitart X, Hayward M, Nisenbaum LK, Beitner-Johnson DB, Haycock JW, Nestler EJ (1990) Identification of MARPP-58, a morphine- and cyclic AMP-regulated phosphoprotein of 58 KDa, as tyrosine hydroxylase: evidence for regulation of its expression by chronic morphine in rat locus coeruleus. J Neurosci 10: 2649–2659

    PubMed  CAS  Google Scholar 

  • Hadcock JR, Ros M, Malbon CC (1989) Agonist regulation of β-adrenergic receptor mRN A: analysis in S49 mouse lymphoma mutants. J Biol Chem 264: 13956–13961

    PubMed  CAS  Google Scholar 

  • Hadcock JR, Ros M, Watkins DC, Malbon CC (1990) Cross-regulation between G-protein-mediated pathways: stimulation of adenylyl cyclase increases expression of the inhibitory G-protein, Gid2. J Biol Chem 265: 14784–14790

    PubMed  CAS  Google Scholar 

  • Harada H, Ueda H, Wada Y, Katada T, Ui M, Satoh M (1989) Phosphorylation of μ-opioid receptors — a putative mechanism of selective uncoupling of receptor- Gi interaction, measured with low Km GTPase and nucleotide-sensitive agonist binding. Neurosci Lett 100: 221–226

    PubMed  CAS  Google Scholar 

  • Harada H, Ueda H, Katada T, Ui M, Satoh M (1990) Phosphorylated μ-opioid receptor purified from rat brains lacks functional coupling with Gi1, a GTP- binding protein in reconstituted lipid vesicles. Neurosci Lett 113: 47–49

    PubMed  CAS  Google Scholar 

  • Hazum E, Chang K-J, Cuatrecasas P (1979) Opiate (enkephalin) receptors of neuroblastoma cells: occurrence in clusters on the cell surface. Science 206: 1077–1079

    PubMed  CAS  Google Scholar 

  • Horstman DA, Brandon S, Wilson AL, Guyer CA, Cragoe EJ Jr, Limbird LE (1990) An aspartate conserved among G-protein receptors confers allosteric regulation of α2 adrenergic receptors by sodium. J Biol Chem 265: 21590–21595

    PubMed  CAS  Google Scholar 

  • Huganir RL, Greengard P (1990) Regulation of neurotransmitter receptor desensitization by protein phosphorylation. Neuron 5: 555–567

    PubMed  CAS  Google Scholar 

  • Johnson GL, Kaslow HR, Bourne HR (1978) Genetic evidence that cholera toxin substrates are regulatory components of adenylyl cyclase. J Biol Chem 253: 7120–7123

    PubMed  CAS  Google Scholar 

  • Johnson SM, Costa M, Humphreys CMS (1989) Opioid dependence in myenteric neurons innervating the circular muscle of guinea-pig ileum. Naunyn- Schmiedeberg’s Arch Pharmacol 339: 166–172

    PubMed  CAS  Google Scholar 

  • Johnson SM, Fleming WW (1989) Mechanisms of cellular adaptive sensitivity changes: applications to opioid tolerance and dependence. Pharmacol Rev 41: 435–488

    PubMed  CAS  Google Scholar 

  • Johnson SM, Westfall DP, Howard SA, Fleming WW (1978) Sensitivities of the isolated ileal longitudinal smooth muscle-myenteric plexus and hypogastric nerve-vas deferens of the guinea pig after chronic morphine pellet implantation. J Pharmacol Exp Ther 204: 54–66

    PubMed  CAS  Google Scholar 

  • Katada T, Ui M (1982) Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc Natl Acad Sci USA 79: 3129–3133

    PubMed  CAS  Google Scholar 

  • Klee WA, Streaty RA (1974) Narcotic receptor sites in morphine-dependent rats. Nature 248: 61–63

    PubMed  CAS  Google Scholar 

  • Konkoy CS, Childers SR (1989) Dynorphin-selective inhibition of adenylyl cyclase in guinea pig cerebellum membranes. J Pharmacol Exp Ther 36: 627–633

    CAS  Google Scholar 

  • Koski G, Klee WA (1981) Opiates inhibit adenylate cyclase by stimulating GTP hydrolysis. Proc Natl Acad Sci USA 78: 4185–4189

    PubMed  CAS  Google Scholar 

  • Kurose H, Katada T, Ui M (1983) Specific uncoupling by islet activating protein, pertussis toxin, of negative signal transduction via α-adrenergic, cholinergic, and opiate receptors in neuroblastoma x glioma hybrid cells. J Biol Chem 258: 4870–4875

    PubMed  CAS  Google Scholar 

  • Lahti R, Collins R (1978) Chronic naloxone results in prolonged increases in opiate binding sites in rat brain. Eur J Pharmacol 51: 185–186

    PubMed  CAS  Google Scholar 

  • Lang J, Costa T (1989) Chronic exposure of NG 108-15 cells to opiate agonists does not alter the amount of the guanine nucleotide-binding proteins Gi and G0. J Neurochem 53: 1500–1506

    PubMed  CAS  Google Scholar 

  • Lang J, Schulz R (1989) Chronic opiate receptor activation in vivo alters the level of G-protein subunits in guinea-pig myenteric plexus. Neuroscience 32: 503–510

    PubMed  CAS  Google Scholar 

  • Larsen NE, Mulliken-Kilpatrick D, Blume AJ (1981) Two different modifications of the neuroblastoma x glioma hybrid opiate receptors induced by N-ethylmaleimide. Mol Pharmacol 20: 255–262

    PubMed  CAS  Google Scholar 

  • Law P-Y, Horn DS, Loh HH (1982) Loss of opiate receptor activity in neuroblastoma x glioma NG108-15 hybrid cells after chronic opiate treatment: a multistep process. Mol Pharmacol 22: 1–4

    PubMed  CAS  Google Scholar 

  • Law P-Y, Horn DS, Loh HH (1983) Opiate receptor down-regulation and desensitization in neuroblastoma x glioma NG108-15 hybrid cells are two separate cellular adaptation processes. Mol Pharmacol 24: 413–424

    PubMed  CAS  Google Scholar 

  • Law P-Y, Horn DS, Loh HH (1984) Down-regulation of opioid receptor in neuroblastoma x glioma NG108-15 hybrid cells: chloroquine promotes accumulation of tritiated enkephalin in the lysosomes. J Biol Chem 259: 4096–4104

    PubMed  CAS  Google Scholar 

  • Law P-Y, Horn DS, Loh HH (1985a) Multiple affinity states of opiate receptor in neuroblastoma x glioma NG108–15 hybrid cells. J Biol Chem 260: 3561–3569

    PubMed  CAS  Google Scholar 

  • Law P-Y, Louie AK, Loh HH (1985b) Effect of pertussis toxin treatment on the down-regulation of opiate receptors in neuroblastoma x glioma NG108-15 hybrid cells. J Biol Chem 260: 14818–23

    PubMed  CAS  Google Scholar 

  • Lee S, Rosenberg CR, Musacchio JM (1988) Cross-dependence to opioid and α2-adrenergic receptor agonists in NG1208-15 cells. FASEB J 2: 52–55

    PubMed  CAS  Google Scholar 

  • Leff P, Harper D, Dainty IA, Dougall IG (1990) Harmacological estimation of agonist affinity; detection of errors that may be caused by the operation of receptor isomerization or ternary complex mechanism. Br J Pharmacol 101: 55–60

    PubMed  CAS  Google Scholar 

  • Lefkowitz RJ, Mullikan D, Caron MG (1976) Regulation of β-adrenergic receptors by guanyl-5’-yl imidophosphate and other purine nucleotides. J Biol Chem 254: 44686–44692

    Google Scholar 

  • Lenoir D, Barg J, Simantov R (1984) Characterization and downregulation of opiate receptors in aggregating fetal rat brain cells. Brain Res 304: 295–290

    Google Scholar 

  • Longabaugh JP, Didbury J, Spiegal A, Stiles GL (1989) Modification of rat adipocyte A1 adenosine receptor-adenylate cyclase system during chronic exposure to an A1 adenosine receptor agonist: alterations in the quantity of Gsa and Giot are not associated with changes in their mRNAS. Mol Pharmacol 36: 681–688

    PubMed  CAS  Google Scholar 

  • Mack KJ, Lee MF, Weyhenmeyer JA (1985) Effects of guanyl nucleotides and ions on kappa opioid binding. Brain Res Bull 14: 301–306

    PubMed  CAS  Google Scholar 

  • Mackay D (1990) Agonist potency and apparent affinity: interpretation using classical and steady-state ternary-complex models. Trends Pharmacol Sci 11: 17–22

    PubMed  CAS  Google Scholar 

  • Maguire ME, van Arsdale PM, Gilman AG (1976) An agonist-specific effect of guanine nucleotides on binding to the beta adrenergic receptor. Mol Pharmacol 12: 335–339

    PubMed  CAS  Google Scholar 

  • Makman MH, Dvorkin B, Crain SM (1988) Modulation of adenylate cyclase activity of mouse spinal cord-ganglion explants by opioids, serotonin and pertussis toxin. Brain Res 445: 303–313

    PubMed  CAS  Google Scholar 

  • Maloteaux JM, Octave JN, Laterre EC, Laduron PM (1989) Downregulation of 3H-lofentanil binding to opiate receptors in different cultured neuronal cells. Naunyn Schmiedebergs Arch Pharmacol 339: 192–199

    PubMed  CAS  Google Scholar 

  • McKenzie FR, Milligan G (1990) δ-Opioid receptor mediated inhibition of adenylate cyclase is transduced specifically by the guanine nucleotide binding protein Gi2. Biochem J 267:391–398

    PubMed  CAS  Google Scholar 

  • Milligan G, Green A (1991) Agonist control of G-protein levels. Trends Pharmacol Sci 12: 207–209

    PubMed  CAS  Google Scholar 

  • Misawa H, Ueda H, Satoh M (1990) κ-Opioid agonist inhibits phospholipase C, possibly via an inhibition of G-protein activity. Neurosci Lett 112:324–327

    PubMed  CAS  Google Scholar 

  • Morris BJ, Herz A (1989) In vivo regulation of opioid receptors: simultaneous down-regulation of kappa sites and up-regulation of mu sites following chronic agonist /antagonist treatment. Neuroscience 29: 433–442

    PubMed  CAS  Google Scholar 

  • Morris BJ, Millan MJ (1990) Inability of an opioid antagonist lacking negative intrinsic activity to induce opioid receptor up-regulation in vivo. Br J Pharmacol 102: 883–886

    Google Scholar 

  • Moses MA, Snell CR (1984) The regulation of δ-opiate receptor density on 108ccl5 neuroblastoma X glioma hybrid cells. Br J Pharmacol 81: 169–174

    PubMed  CAS  Google Scholar 

  • Musacchio JM, Greenspan DL (1986) The adenylate cyclase rebound response to naloxone in the NG 108-15 cells: effects of etorphine and other opiates. Neuropharmacology 25: 833–837

    PubMed  CAS  Google Scholar 

  • Nagamatsu K, Suzuki K, Teshima R, Ikebuchi H, Terao T (1989) Morphine enhances the phosphorylation of a 58kDa protein in mouse brain membranes. Biochem J 257: 165–171

    PubMed  CAS  Google Scholar 

  • Nestler EJ, Tallman JF (1988) Chronic morphine treatment increases cyclic AMP- dependent protein kinase activity in the rat locus coeruleus. Mol Pharmacol 33: 127–132

    PubMed  CAS  Google Scholar 

  • Nestler EJ, Erdos JJ, Terwilliger R, Duman RS, Tallman JF (1989) Regulation of G proteins by chronic morphine in the rat locus coeruleus. Brain Res 476: 230–239

    PubMed  CAS  Google Scholar 

  • Nishino K, Su YF, Wong C-S, Watkins WD, Chang K-J (1990) Dissociation of μ-opioid tolerance from receptor downregulation in rat spinal cord. J Pharmacol Exp Ther 253: 67–72

    PubMed  CAS  Google Scholar 

  • Nock B, Giodano AL, Cicero TJ, O’Connor LH (1990) Affinity of drugs and peptides for U-69593-sensitive and -insensitive kappa opiate binding sites: the U-69593-insensitive site appears to be the beta-endorphin-specific epsilon receptor. J Pharmacol 254: 412–419

    CAS  Google Scholar 

  • North RA, Karras PJ (1978) Opiate tolerance and dependence induced in vitro in single myenteric neurons. Nature 272: 73–75

    PubMed  CAS  Google Scholar 

  • Ott S, Costa T, Herz A (1989) Opioid receptors of neuroblastoma cells are in tow domains of the plasma membrane that differ in content of G protein. J Neurochem 52: 619–626

    PubMed  CAS  Google Scholar 

  • Paterson SJ, Robson LE, Kosterlitz HW (1986) Control by cations of opioid binding in guinea pig brain membranes. Proc Natl Acad Sci USA 83: 6216–6220

    PubMed  CAS  Google Scholar 

  • Pert CB, Snyder SH (1974) Opiate receptor binding of agonists and antagonists affected differentially by sodium. Mol Pharmacol 10: 868–879

    CAS  Google Scholar 

  • Porreca F, Burks TF (1983) Affinity of normorphine for its pharmacologic receptor in the naive and morphine-tolerant guinea pig isolated ileum. J Pharmacol Exp Ther 225: 688–693

    PubMed  CAS  Google Scholar 

  • Puttfarcken PS, Cox BM (1989) Morphine-induced desensitization and down- regulation at mu-receptors in 7315c pituitary tumor cells. Life Sci 45: 1937–1942

    PubMed  CAS  Google Scholar 

  • Puttfarcken P, Werling LL, Brown SR, Cote TE, Cox BM (1986) Sodium regulation of agonist binding at opioid receptors. I. Effects of sodium replacement on binding to μ- and δ-type opioid receptors in 7315c and NG 108-15 cells and cell membranes. Mol Pharmacol 30: 81–89

    PubMed  CAS  Google Scholar 

  • Puttfarcken PS, Werling LL, Cox BM (1988) Effects of chronic morphine exposure on opioid inhibition of adenylyl cyclase in 7315c cell membranes: a useful model for the study of tolerance at μ opioid receptors. Mol Pharmacol 33: 520–527

    PubMed  CAS  Google Scholar 

  • Rasmussen K, Aghajanian GK (1989) Withdrawal-induced activation of locus coeruleus neurons in opiate-dependent rats: attentuation by lesions of the nucleus paragigantocellularis. Brain Res 505: 346–350

    PubMed  CAS  Google Scholar 

  • Rasmussen K, Beitner-Johnson DB, Krystal JH, Aghajanian GK, Nestler EJ (1990) Opiate withdrawal and the rat locus coeruleus: behavioral, electrophsiological and biochemical correlates. J Neurosci 10: 2308–2317

    PubMed  CAS  Google Scholar 

  • Robson LE, Foote RW, Maurer R, Kosterlitz HW (1984) Opioid binding sites of the κ-type in guinea pig cerebellum. Neuroscience 12: 621–627

    PubMed  CAS  Google Scholar 

  • Rodbell M (1980) The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284: 17–22

    PubMed  CAS  Google Scholar 

  • Rodbell M, Lin MC, Salomon Y (1974) Evidence for interdependent action of glucagon and nucleotides of the hepatic adenylate cyclase system. J Biol Chem 249: 59 - 65

    PubMed  CAS  Google Scholar 

  • Roth RL, Laskowski MB, Coscia CJ (1981) Evidence for distinct subcellular sites of opiate receptors: demonstration of opiate receptors in smooth microsomal fractions isolated from rat brain. J Biol Chem 256: 10117–10123

    CAS  Google Scholar 

  • Rothman RB, Danks JA, Jacobson AE, Burke TR Jr, Rice KC, Tortella FC, Holaday JW (1986) Morphine tolerance increases μ-non-competitive δ binding sites. Eur J Pharmacol 124: 113–119

    PubMed  CAS  Google Scholar 

  • Pothman RB, Bykov V, de Costa BR, Jacobson AE, Rice KC, Brady LS (1990) Interaction of endogenous opioid peptides and other drugs with four kappa opioid binding sites in guinea pig brain. Peptides 11: 311–331

    Google Scholar 

  • Scheideler MA, Zukin RS (1990) Reconstitution of solubilized delta-opiate receptor binding sites in lipid vesicles. J Biol Chem 265: 15176–15182

    PubMed  CAS  Google Scholar 

  • Schulz R, Herz A (1976) Aspects of opiate dependence in the myenteric plexus of the guinea pig. Life Sci 19: 1117–1128

    PubMed  CAS  Google Scholar 

  • Schulz R, Wüster M, Herz A (1980) Pharmacological characterization of the epsilon sopiate receptor. J Pharmacol Exp Ther 216: 604–606

    Google Scholar 

  • Sharma SK, Klee WA, Nirenberg M (1975) Dual regulation of adenylate cycclase accounts for narcotic dependence and tolerance. Proc Natl Acad Sci USA 72: 3092–3096

    PubMed  CAS  Google Scholar 

  • Sharma SK, Klee WA, Nirenberg M (1977) Opiate-dependent modulation of adenylate cyclase. Proc Natl Acad Sci USA 74: 3365–3369

    PubMed  CAS  Google Scholar 

  • Shen K-F, Crain SM (1989) Dual opioid modulation of the action potential duration of mouse dorsal root ganglion neurons in culture. Brain Res 491: 227–242

    PubMed  CAS  Google Scholar 

  • Shen K-F, Crain SM (1990a) Cholera toxin-A subunit blocks opioid excitatory effects on sensory neuron action potentials indicating mediation by Gs-linked opioid receptors. Brain Res 525: 225–231

    PubMed  CAS  Google Scholar 

  • Shen K-F, Crain SM (1990b) Cholera toxin-B subunit blocks opioid excitatory effects on sensory neuron action potentials indicating that GM1 ganglioside may regulate Gs-linked opioid receptor functions. Brain Res 531: 1–7

    PubMed  CAS  Google Scholar 

  • Simon EJ, Hiller JM, Edelman I (1973) Stereospecific binding of the potent narcotic analgesic [3H]etorphine to rat brain homogenate. Proc Natl Acad Si USA 70: 1947–1949

    CAS  Google Scholar 

  • Smith JAM, Hunter JC, Hill RG, Hughes J (1989) A kinetic analysis of K-opioid agonist binding using the selective radioligand [3H]U69593. J Neurochem 53: 27–36

    PubMed  CAS  Google Scholar 

  • Spain JW, Coscia CJ (1987) Multiple interconvertible affinity states for the δ opioid agonist receptor complex. J Biol Chem 262: 8948–8951

    PubMed  CAS  Google Scholar 

  • Steece KA, DeLeon-Jones FA, Meyerson LR, Lee JM, Fields JZ, Ritzman RF (1986) In vivo down-regulation of rat striatal opioid receptors by chronic enkephalin. Brain Res Bull 17: 255–257

    PubMed  CAS  Google Scholar 

  • Sullivan KA, Miller RT, Masters SB, Beidermann B, Heidman W, Bourne HR (1987) Identification of receptor contact site involved in receptor-G protein coupling. Nature 330: 758–762

    PubMed  CAS  Google Scholar 

  • Tao P-L, Chang L-R, Law PY, Loh HH (1988) Decrease in δ-receptor density in rat brain after chronic [D-Ala2, D-Leu5]enkephalin treatment. Brain Res 462: 313–320

    PubMed  CAS  Google Scholar 

  • Tao P-L, Lee H-Y, Chang L-R, Loh HH (1990) Decrease in μ-opioid receptor binding capacity in rat brain after chronic PL017 treatment. Brain Res 526: 270–275

    PubMed  CAS  Google Scholar 

  • Tempel A, Crain SM, Peterson ER, Simon EJ, Zukin RS (1986) Antagonist-induced opiate receptor upregulation in cultures of fetal mouse spinal cord-ganglion explants. Dev Brain Res 25: 287–291

    CAS  Google Scholar 

  • Tempel A, Habas JE, Paredes W, Barr GA (1988) Morphine-induced down- regulation of μ-opioid receptors in neonatal rat brain. Dev Brain Res 41: 129–133

    Google Scholar 

  • Terwilliger R, Beitner-Johnson D, Sevarino KA, Crain SM, Nestler EJ (1991) A general model for adaptations in G proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res 548: 100–110

    PubMed  CAS  Google Scholar 

  • Thomas JM, Vagelos R, Hoffman BB (1990) Decreased cyclic AMP degradation in NG 108-15 neuroblastoma X glioma hybrid cells and S49 lymphoma cells chronically treated with drugs that inhibit adenylate cyclase. J Neurochem 54: 402–410

    PubMed  CAS  Google Scholar 

  • Tiberi M, Magnan J (1990) Quantitative analysis of multiple K-opioid receptors by selective and non-selective ligand binding in guinea pig spinal cord: resolution of high and low affinity states of the κ2 receptors by a computerized model-fitting technique. Mol Pharmacol 37: 694–703

    PubMed  CAS  Google Scholar 

  • Tucker JF (1984) Effects of pertussis toxin on normorphine dependence and on acute inhibitory effects of normorphine and clonidine in guinea pig isolated ileum. Br J Pharmacol 83: 326–328

    PubMed  CAS  Google Scholar 

  • Tung C-S, Grenhoff J, Svennson TH (1990) Morphine withdrawal responses of rat locus coeruleus neurons are blocked by an excitatory amino acid antagonist. Acta Physiol Scand 138: 581–582

    PubMed  CAS  Google Scholar 

  • Ueda H, Misawa H, Fukushima N, Takagi H (1987) The specific opioid κ-agonist U50488H inhibits low Km GTPase. Eur J Pharmacol 138: 129–132

    PubMed  CAS  Google Scholar 

  • Ueda H, Harada H, Nozaki M, Katada T, Ui M, Satoh M, Takagi H (1988) Reconstitution of rat brain μ opioid receptors with purified guanine nucleotide- binding regulatory proteins. Gi and GO. Proc Natl Acad Sci USA 85: 7013–7017

    PubMed  CAS  Google Scholar 

  • Ueda H, Misawa H, Katada T, Ui M, Takagi H, Satoh M (1990a) Functional reconstitution of purified Gi and GO with μ-opioid receptors in guinea pig striatal membranes pretreated with micromolar concentrations of N-ethylmaleimide. J Neurochem 54: 841–848

    PubMed  CAS  Google Scholar 

  • Ueda H, Uno S, Harada J, Kobayashi I, Katada T, Ui M, Satoh M (1990b) Evidence for receptor-mediated inhibition of intrinsic activity of GTP-binding protein, Gi1 and Gi2, but not GO in reconstitution experiments FEBS Lett 266: 178–182

    PubMed  CAS  Google Scholar 

  • Vachon L, Costa T, Herz A (1986) Differential sensitivity of basal and opioid- stimulated low Km GTPase to guanine nucleotide analogs. J Neurochem 47: 1361–1369

    PubMed  CAS  Google Scholar 

  • Vachon L, Costa T, Herz A (1987) GTPase and adenylate cyclase desensitize at different rates in NG 108-15 cells. Mol Pharmacol 31: 159–168

    PubMed  CAS  Google Scholar 

  • Vogel Z, Barg J, Attali B, Simantov R (1990) Differential effect of μ, δ, and κ ligands on G protein a subunits in cultured brain cells. J Neurosci Res 27: 106–111

    PubMed  CAS  Google Scholar 

  • Wang H-Y, Berrios M, Malbon CC (1989) Localization of P-adrenergic receptors in A431 cells in situ: effect,of chronic exposure to agonist. Biochem J 263: 533–538

    PubMed  CAS  Google Scholar 

  • Werling LL, Brown SR, Cox BM (1984) The sensitivity of opioid receptor types to regulation by sodium and GTP. Neuropeptides 5: 137–140

    PubMed  CAS  Google Scholar 

  • Werling LL, Brown SR, Puttfarcken P, Cox BM (1986) Sodium regulation of agonist binding at opioid receptors. II. Effects of sodium replacement on opioid binding in guinea pig cortical membranes. Mol Pharmacol 30: 90–95

    Google Scholar 

  • Werling LL, McMahon PN, Cox BM (1988a) Selective tolerance at mu and kappa opioid receptors modulating norepinephrine release in guinea pig cortex. J Pharmacol Exp Ther 247: 1103–1106

    PubMed  CAS  Google Scholar 

  • Werling LL, Puttfarcken PS, Cox BM (1988b) Multiple agonist-affinity states of opioid receptors: regulation of binding by guanyl nucleotides in guinea pig cortical, NG 108-15, and 7315c cell membranes. Mol Pharmacol 33: 423–431

    PubMed  CAS  Google Scholar 

  • Werling LL, McMahon PN, Cox BM (1989a) Effects of pertussis toxin on opioid regulation of catecholamine release from rat and guinea pig brain slices. Naunyn Schmiedebergs Arch Pharmacol 339: 509–513

    PubMed  CAS  Google Scholar 

  • Werling LL, McMahon PN, Cox BM (1989b) Selective changes in μ opioid receptor properties induced by chronic morphine exposure. Proc Natl Acad Sci USA 86: 6393–6397

    PubMed  CAS  Google Scholar 

  • Williams JT, North RA (1984) Opiate-receptor interactions on single locus coeruleus neurones. Mol Pharmacol 26: 489–497

    PubMed  CAS  Google Scholar 

  • Wong YH, Demohou-Mason CD, Hanley MR, Barnard EA (1990) Agonist-selective protection of the opioid receptor-coupled G proteins from inactivation by 5’-p-fluorosulphonylbenzoyl guanosine. J Neurochem 54: 39–45

    PubMed  CAS  Google Scholar 

  • Wüster M, Costa T (1984) The opioid-induced desensitization (tolerance) in neuroblastoma X glioma NG 108-15 hybrid cells: results from receptor uncoupling. NIDA Res Monogr 54: 136–145

    PubMed  Google Scholar 

  • Wüster M, Costa T, Gramsch C (1983) Uncoupling of receptors is essential for opiate-induced desensitization (tolerance) in neuroblastoma X glioma hybrid cells NG 108-15. Life Sci 33 [Suppl l]: 341–344

    PubMed  Google Scholar 

  • Wüster M, Costa T, Aktories K, Jacobs KH (1984) Sodium regulation of opioid agonist binding is potentiated by pertussis toxin. Biochem Biophys Res Commun 123: 1107–1115

    PubMed  Google Scholar 

  • Zazac J-M, Roques B (1985) Differences in binding properties of μ and δ opioid receptor subtypes from rat brain: kinetic analysis and effects of ions and nucleotides. J Neurochem 44: 1605–1614

    Google Scholar 

  • Zukin RS, Gintzler AR (1980) Guanyl nucleotide interactions with opiate receptors in guinea pig brain and ileum. Brain Res 186: 486–491

    PubMed  CAS  Google Scholar 

  • Zukin RS, Sugarman JR, Fitz-Syage ML, Gardner EL, Zukin SR, Gintzler AR (1982) Naltrexone-induced opiate-receptor supersensitivity. Brain Res 25: 287–291

    Google Scholar 

  • Zukin RS, Eghbali M, Olive D, Unterwald EM, Tempel A (1988) Characterization and visualization of rat and guinea pig brain κ opioid receptors: evidence for κ1 and κ2 opioid receptors. Proc Natl Acad Sci USA 85: 4061–4065

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cox, B.M. (1993). Opioid Receptor-G Protein Interactions: Acute and Chronic Effects of Opioids. In: Herz, A., Akil, H., Simon, E.J. (eds) Opioids. Handbook of Experimental Pharmacology, vol 104 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77460-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77460-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77462-1

  • Online ISBN: 978-3-642-77460-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics