Advertisement

Opioids pp 681-710 | Cite as

Development of Receptor-Selective Opioid Peptide Analogs as Pharmacologic Tools and as Potential Drugs

  • P. W. Schiller
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 104 / 1)

Abstract

Much progress has been made in the elucidation of opioid receptor heterogeneity during the past 15 years. The existence of three major opioid receptor types (μ, δ, ĸ) (MARTIN et al. 1976; LORD et al. 1977) is now firmly established and there is strong evidence in favor of a fourth receptor type, the c–receptor (SCHULZ et al. 1979). More recently obtained physiological and receptor binding data led to the proposal of various opioid receptor subtypes (μ1, μ2, ĸ1, ĸ2, ĸ3) (reviewed in CLARK et al. 1989). Opioids produce a large variety of well-known central and peripheral effects, including spinal and supraspinal analgesia, tolerance and physical dependence, respiratory depression, euphoria, dysphoria and hallucinations, sedation, appetite suppression and other behavioral effects, control and release of several hormones and neurotransmitters, effects on gastrointestinal motility, hyperthermia/hypothermia, cardiovascular effects, effects on tumor growth, and effects on the immune response. Both for the elucidation of the physiological role(s) of the various receptor classes and for the development of opioid-derived drugs it is of great importance to establish clear-cut correlations between specific opioid receptor types and distinct opioid effects. For this purpose further efforts are needed to develop opioid agonists and antagonists with high selectivity for the various receptor types and subtypes. The fact that morphine displays only limited μ-receptor selectivity is well known and the characterization of the various opioid peptides generated through processing of the three mammalian precursors showed that none of them is very receptor selective (reviewed in HöLLT 1986).

Keywords

Opioid Receptor Opioid Peptide Photoaffinity Label Bivalent Ligand Pept Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amiche M, Sagan S, Mor A, Delfour A, Nicolas P (1989) Dermenkephalin (Try-D- Met-Phe-His-Leu-Met-Asp-NH2): a potent and fully specific agonist for the δ opioid receptor. Mol Pharmacol 35: 774–779PubMedGoogle Scholar
  2. Bajusz S, Rònai AZ, Székely JI, Miglécz E, Berzétei I (1980) Further enhancement of analgesic activity: enkephalin analogs with terminal guanidino group. FEBS Lett 110: 85–87PubMedCrossRefGoogle Scholar
  3. Beddell CR, Clark RB, Hardy GW, Lowe LA, Ubatuba FB, Vane JR, Wilkinson S, Chang K–J, Cuatrecasas P, Miller RJ (1977) Structural requirements for opioid activity of analogues of the enkephalins. Proc R Soc Lond [Biol] 198: 249–265CrossRefGoogle Scholar
  4. Benyhe S, Hepp J, Simon J, Borsodi A, Medzihradszky K, Wollemann M (1987) Tyr-D-Ala-Gly-(Me)Phe-chloromethyl ketone: a mu specific affinity label for the opioid receptor. Neuropeptides 9: 225–235PubMedCrossRefGoogle Scholar
  5. Berman JM, Goodman M, Nguyen TM-D, Schiller PW (1983) Cyclic and acyclic partial retro–inverso enkephalins:μ-receptor selective enzyme-resistant analogs. Biochem Biophys Res Commun 115: 864–870PubMedCrossRefGoogle Scholar
  6. Bickel M, Alpermann H-G, Roche M, Schemann M, Ehrlein H-J (1985) Pharmacology of a gut motility stimulating enkephalin analogue. Drug Res 35: 1417–1426Google Scholar
  7. Bowen WD, Hellewell SB, Kelemen M, Huey R Stewart D (1987) Affinity labeling of δ-opiate receptors using [D-Ala2, Leu5, Cys6]enkephalin. J Biol Chem 262: 13434–13439PubMedGoogle Scholar
  8. Chang K–J, Killian A, Hazum E, Cuatrecasas P, Chang J–K (1981) Morphiceptin (H-Tyr-Pro-Phe-Pro-NH2): a potent and specific agonist for morphine (μ) receptors. Science 212: 75–77PubMedCrossRefGoogle Scholar
  9. Chang K–J, Wei ET, Killian A, Chang K–J (1983) Potent morphiceptin analogs: structure activity relationships and morphine-like activities. J Pharmacol Exp Ther 227: 403–408PubMedGoogle Scholar
  10. Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22: 3099–3102PubMedCrossRefGoogle Scholar
  11. Clark JA, Liu L, Price M, Hersh B, Edelson M, Pasternak GW (1989) Kappa opiate receptor multiplicity: evidence for two U50,488-sensitive K1 subtypes and a novel ĸ3 subtype. J Pharmacol Exp Ther 251: 461–468PubMedGoogle Scholar
  12. Corbett AD, Gillan MGC, Kosterlitz HW, McKnight AT, Paterson SJ, Robson LE (1984) Selectivities of opioid peptide analogues as agonists and antagonists at the δ-receptor. Br J Pharmacol 83: 271–279PubMedGoogle Scholar
  13. Cotton R, Giles MG, Miller L, Shaw JS, Timms D (1984) ICI 174864: a highly selective antagonist for the opioid δ-receptor. Eur J Pharmacol 97: 331–332PubMedCrossRefGoogle Scholar
  14. DiMaio J, Schiller PW (1980) A cyclic enkephalin analog with high in vitro opiate activity. Proc Natl Acad Sci USA 77: 7162–7166PubMedCrossRefGoogle Scholar
  15. DiMaio J, Nguyen TM–D, Lemieux C, Schiller PW (1982) Synthesis and pharmacological characterization in vitro of cyclic enkephalin analogues: effect of conformational constraints on opiate receptor selectivity. J Med Chem 25: 1432–1438PubMedCrossRefGoogle Scholar
  16. Erspamer V, Melchiorri P, Falconieri-Erspamer G, Negri L, Corsi R, Severini C, Barra D, Simmaco M, Kreil G (1989) Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for δ opioid binding sites. Proc Natl Acad Sci USA 86: 5188–5192PubMedCrossRefGoogle Scholar
  17. Foldes J, Torok K, Székely JI, Borvendeg J, Karczag I, Tolna J, Marosfi S, Varadi A, Gara A Rònai AZ, Szilagyi G (1983) Human tolerability studies with D-Met2, Pro –enkephalinamide. Life Sci 33: 769–772Google Scholar
  18. Frederickson RCA (1986) Progress in the potential use of enkephalin analogs. In: Rapaka RS, Hawks RL (eds) Opioid peptides: Molecular pharmacology, biosynthesis, and analysis. Natl Inst Drug Abuse Res Monogr Ser 70: 367Google Scholar
  19. Frederickson RCA, Smithwick EL, Shuman R, Bemis KG (1981) Metkephamid, a systemically active analog of methionine enkephalin with potent opioid δ- receptor activity. Science 211: 603–604PubMedCrossRefGoogle Scholar
  20. Gacel G, Fournie–Zaluski MC, Roques BP (1980) Tyr-D-Ser-Gly-Phe-Leu-Thr, a highly preferential ligand for δ-opiate receptors. FEBS Lett 118: 245–247PubMedCrossRefGoogle Scholar
  21. Gacel G, Belleney J, Delay-Goyet P, Seguin C, Morgat J-L, Roques BP (1987) High affinity and improved selectivity for δ opioid receptors exhibited by new linear hexapeptides. In: Theodoropoulos D (ed) Peptides 1986. Proceedings of the 19th European peptide symposium, de Gruyter, Berlin, p 377Google Scholar
  22. Gacel G, Zajac JM, Delay-Goyet P, Daugé V, Roques BP (1988a) Investigation of the structural parameters involved in the μ and δ opioid receptor discrimination of linear encephalin-related peptides. J Med Chem 31: 374–383PubMedCrossRefGoogle Scholar
  23. Gacel G, Daugé V, Breuzé P, Delay-Goyet P, Roques BP (1988b) Development of conformational constrained linear peptides exhibiting a high affinity and pronounced selectivity for δ opioid receptors. J Med Chem 31: 1891–1897PubMedCrossRefGoogle Scholar
  24. Gacel G, Fellion E, Baamonde A, Daugé V, Roques BP (1990) Synthesis, biochemical and pharmacological properties of BUBUC, a highly selective and systemically active agonist for in vivo studies of δ opioid receptors. Peptides 11: 983–988PubMedCrossRefGoogle Scholar
  25. Gairin JE, Gouarderes C, Mazarguil H, Alvinerie P, Cros J (1984) [D- Pro10]dynorphin-(l-ll) is a highly potent and selective ligand for ĸ opioid receptors. Eur J Pharmacol 106:457–458Google Scholar
  26. Gairin JE, Mazarguil H, Alvinerie P, Saint-Pierre S, Meunier J-C, Cros J (1986) Synthesis and biological activities of dynorphin A analogues with opioid antagonist properties. J Med Chem 29: 1913–1917PubMedCrossRefGoogle Scholar
  27. Gairin JE, Mazarguil H, Alvinerie P, Botanch C, Cros J, Meunier J-C (1988) N,N-Diallyltyrosyl substitution confers antagonist properties on the ĸ-selective opioid peptide [D-Pro10]dynorphin A-(l–ll). Br J Pharmacol 95:1023–1030Google Scholar
  28. Garbay-Jaureguiberry C, Robichon A, Daugé V, Rossignol P, Roques BP (1984) Highly selective photoaffinity labeling of μ and δ opioid receptors. Proc Natl Acad Sci USA 81: 7718–7722PubMedCrossRefGoogle Scholar
  29. Geiger R, Bickel M, Teetz V, Alpermann H-G (1983) Central and peripheral action of enkephalin analogues. Hoppe Seyler’s Z Physiol Chem 364: 1555–1562PubMedCrossRefGoogle Scholar
  30. Goldstein A, Naidu A (1989) Multiple opioid receptors: ligand selectivity profiles and binding site signatures. Mol Pharmacol 36: 265–272PubMedGoogle Scholar
  31. Handa BK, Lane AC, Lord J AH, Morgan BA, Ranee MJ, Smith CFC (1981) Analogues of β-LPH61–64 possessing selective agonist activity at μ-opiate receptors. Eur J Pharmacol 70: 531–540PubMedCrossRefGoogle Scholar
  32. Hansen PE, Morgan BA (1984) Structure–activity relationships in enkephalin peptides. In: Udenfriend S, Meienhofer J (eds) The peptides: analysis, synthesis, biology, vol 6. Academic, Orlando, p 269Google Scholar
  33. Hardy GW, Lowe LA, Sang PY, Simpkin DSA, Wilkinson S, Follenfant RL, Smith TW (1988) Peripherally acting enkephalin analogues. 1. Polar pentapeptides. J Med Chem 31: 960–966Google Scholar
  34. Hardy GW, Lowe LA, Mills G, Sang PW, Simpkin DSA, Follenfant RL, Shankley C, Smith TW (1989) Peripherally acting enkephalin analogues. 2. Polar tri– and tetrapeptides. J Med Chem 32: 1108–1118Google Scholar
  35. Henschen A, Lottspeich F, Brantl V, Teschemacher H (1979) Novel opioid peptides derived from casein (β-casomorphins): I. Structure of active components from bovine casein peptone. Hoppe-Seyler’s Z Physiol Chem 360: 1217–1224Google Scholar
  36. Herblin WF, Kauer JC, Tam SW (1987) Photoinactivation of the μ opioid receptor using a novel synthetic morphiceptin analog. Eur J Pharmacol 139: 273–279PubMedCrossRefGoogle Scholar
  37. Höllt V (1986) Opioid peptide processing and receptor selectivity. Annu Rev Pharmacol Toxicol 26: 59–77PubMedCrossRefGoogle Scholar
  38. Hruby VJ, Gehrig CA (1989) Recent developments in the design of receptor specific opioid peptides. Med Res Rev 9: 343–401PubMedCrossRefGoogle Scholar
  39. Huffman WF, Callahan JF, Codd EE, Eggleston DS, Lemieux C, Newlander KA, Schiller PW, Takata DT, Walker RF (1989) Mimics of secondary structural elements of peptides and proteins. In: Tam J, Kaiser ET (eds) Synthetic peptides: approaches to biological problems (UCLA symposia on molecular and cellular biology, new series, vol 86 ). Liss, New York, p 257Google Scholar
  40. James IF, Goldstein A (1984) Site–directed alkylation of multiple opioid receptors. I. Binding selectivity. Mol Pharmacol 25: 337–342Google Scholar
  41. James IF, Chavkin C, Goldstein A (1982) Preparation of brain membranes containing a single type of opioid receptor highly selective for dynorphin. Proc Natl Acad Sci USA 79: 7570–7574PubMedCrossRefGoogle Scholar
  42. Jian R, Janssens J, Vantrappen G, Ceccatelli P (1987) Influence of metenkephalin analogue on motor activity of the gastrointestinal tract. Gastroenterology 93: 114–120Google Scholar
  43. Kawasaki, AM, Knapp R, Wire WS, Kramer T, Yamamura HI, Burks TF, Hruby VJ (1990) Cyclic dynorphin A analogs with high selectivities and potencies at ĸ opioid receptors. In: Rivier JE, Marshall GR (eds) Peptides: chemistry, structure, biology. Proceedings of the 11th American peptide symposium. ESCOM, Leiden, p 337Google Scholar
  44. Kazmierski W, Wire WS, Lui GK, Knapp RJ, Shook JE, Burks TF, Yamamura HI, Hruby VJ (1988) Design and synthesis of somatostatin analogues with topographical properties that lead to highly potent and specific μ opioid receptor antagonists with greatly reduced binding at somatostatin receptors. J Med Chem 31: 2170–2177PubMedCrossRefGoogle Scholar
  45. Kessler H, Holzemann G, Zechel C (1985) Peptide conformations. 33. Conformational analysis of cyclic enkephalin analogs of the type Tyr-cyclo-(–Nω)- Xxx-Gly-Phe-Leu-). Int J Pept Protein Res 25: 267–279CrossRefGoogle Scholar
  46. Kiso Y, Yamaguchi M, Akita T, Moritoki H, Takei M, Nakamura H (1981) Simple tripeptide hydroxyalkylamides exhibit surprisingly high and long-lasting opioid activities. Naturwissenschaften 68: 210–212PubMedCrossRefGoogle Scholar
  47. Kondo M, Kodama H, Costa T, Shimohigashi Y (1986) Cystamine-enkephalin dimer. Int J Pept Protein Res 27: 153–159PubMedCrossRefGoogle Scholar
  48. Kosterlitz HW, Lord J AH, Paterson SJ, Waterfield A A (1980) Effects of changes in the structure of enkephalins and of narcotic analgesic drugs on their interactions with μ- and δ-receptors. Br J Pharmacol 68: 333–342PubMedGoogle Scholar
  49. Kreil G, Barra D, Simmaco M, Erspamer V, Falconieri-Erspamer G, Negri L, Severini C, Corsi R, Melchiorri P (1989) Deltorphin, a novel amphibian skin peptide with high selectivity and affinity for δ opioid receptors. Eur J Pharmacol 162: 123–128PubMedCrossRefGoogle Scholar
  50. Kris MG, Gralla RJ, Clark RA, Tyson LB, Groshen S (1988) Control of chemotherapy-induced diarrhea with the synthetic enkephalin BW942C: a randomized trial with placebo in patients receiving cisplatin. J Clin Oncol 6: 663–668PubMedGoogle Scholar
  51. Landis G, Lui G, Shook JE, Yamamura HI, Burks TF, Hruby VJ (1989) Synthesis of highly μ and δ opioid receptor selective peptides containing a photoaffinity group. J Med Chem 32: 638–643PubMedCrossRefGoogle Scholar
  52. Lemaire S, Lafrance L, Dumont M (1986) Synthesis and bilogical activity of dynorphin-(l–13) and analogs substituted in positions 8 and 10. Int J Pept Protein Res 27: 300–305PubMedCrossRefGoogle Scholar
  53. Lord J AH, Waterfield A A, Hughes J, Kosterlitz HW (1977) Endogenous opioid peptides: multiple agonists and receptors. Nature 267: 495–499PubMedCrossRefGoogle Scholar
  54. Lutz RA, Cruciani RA, Shimohigashi Y, Costa T, Kassis S, Munson PJ, Rodbard D (1985) Increased affinity and selectivity of enkephalin tripeptide ( Tyr-D-Ala- Gly) dimers. Eur J Pharmacol 111: 257–261Google Scholar
  55. Mammi NJ, Hassan, M, Goodman M (1985) Conformational analysis of a cyclic enkephalin analogue by 1HNMR and computer simulations. J Am Chem Soc 107: 4008–4013CrossRefGoogle Scholar
  56. Marastoni M, Salvadori S, Balboni G, Borea PA, Marzola G, Tomatis R (1987) Synthesis and activity profiles of new dermorphin-(l–4) peptide analogues. J Med Chem 30: 1538–1542PubMedCrossRefGoogle Scholar
  57. Martin WR, Eades CG, Thompson JA, Huppler RA, Gilbert PE (1976) The effects of morphine- and nalorphine-like drugs in the nondependent and morphine– dependent chronic spinal dog. J Pharmacol Exp Ther 197: 517–523PubMedGoogle Scholar
  58. Maurer R, Gaehwiler BH, Buescher HH, Hill RC, Roemer D (1982) Opiate antagonistic properties of an octapeptide somatostatin analog. Proc Natl Acd Sci USA 79: 4815–4817CrossRefGoogle Scholar
  59. Montecucchi PC, deCastiglione R, Piani S, Gozzini L, Erspamer V (1981) Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin of Phyllomedusa sauvagei. Int J Pept Protein Res 17: 275–283PubMedCrossRefGoogle Scholar
  60. Morley JS (1980) Structure-activity relationships of enkephalin-like peptides. Annu Rev Pharmacol Toxicol 20: 81–110PubMedCrossRefGoogle Scholar
  61. Morley JS, Dutta AS (1986) Structure–activity relationships of opioid peptides. In: Rapaka RS, Barnett G, Hawks RL (eds) Opioid peptides: Medicinal chemistry. Natl Inst Drug Abuse Res Monogr Ser 69: 42Google Scholar
  62. Mosberg HI, Hurst R, Hruby VJ, Galligan JI, Burks IF, Gee K, Yamamura HI (1982) [D-Pen,L-Cys5]Enkephalinamide and [D-Pen2,D-Cys5]enkephalinamide, conformationally constrained cyclic enkephalinamide analogs with δ receptor specificity. Biochem Biophys Res Commun 106:506–512Google Scholar
  63. Mosberg HI, Hurst, R, Hruby VJ, Galligan JJ, Burks TF, Gee K, Yamamura HI (1983a) Conformationally constrained cyclic enkephalin analogs with pronounced delta opioid receptor agonist selectivity. Life Sci 32: 2565–2569PubMedCrossRefGoogle Scholar
  64. Mosberg HI, Hurst R, Hruby VJ, Gee K, Yamamura HI, Galligan JJ, Burks TF (1983b) Bis-penicillamine enkephalins posses highly improved specificity toward δ opioid receptors. Proc Natl Acad Sci USA 80: 5871–5874PubMedCrossRefGoogle Scholar
  65. Mosberg HI, Omnaas JR, Goldstein A (1987) Structural requirements for delta opioid receptor binding. Mol Pharmacol 31: 599–602PubMedGoogle Scholar
  66. Mosberg HI, Omnaas JR, Medzihradsky F, Smith GB (1988) Cyclic disulfide- and dithioether-containing opioid tetrapeptides: development of a ligand with high delta opioid receptor selectivity and affinity. Life Sci 43: 1013–1020PubMedCrossRefGoogle Scholar
  67. Newman EL, Barnard EA (1984) Identification of an opioid receptor subunit carrying the JI binding site. Biochemistry 23: 5385–5389PubMedCrossRefGoogle Scholar
  68. Pelton JT, Gulya K, Hruby VJ, Duckies SP, Yamamura HI (1985) Conformationally restricted analogs of somatostatin with high μ-opiate specificity. Proc Natl Acad Sci USA 82: 236–239PubMedCrossRefGoogle Scholar
  69. Pelton JT, Kazmierski W, Gulya K, Yamamura HI, Hruby VJ (1986) Design and synthesis of conformationally constrained somatostatin analogues with high potency and specificity for fi opioid receptors. J Med Chem 29:2370–2375Google Scholar
  70. Pert CB, Pert A, Chang J-K, Fong BTW (1976) (D-Ala2)-Met-enkephalinamide: a potent, long-lasting synthetic pentapeptide analgesic. Science 194:330–332PubMedCrossRefGoogle Scholar
  71. Posner J, Dean K, Jeal S, Moody SG, Peck AW, Rutter G, Telekes A (1988) A preliminary study of the pharmacodynamics and pharmacokinetics of a novel enkephalin analogue [Tyr-D-Arg-Gly-Phe(4N02)-Pro-NH2 (BW443C)] in healthy volunteers. Eur J Clin Pharmacol 34: 67 — 71PubMedCrossRefGoogle Scholar
  72. Quirion R, Kiso Y, Pert CB (1982) Syndyphalin SD-25: a highly selective ligand for μ opiate receptors. FEBS Lett 141: 203–206PubMedCrossRefGoogle Scholar
  73. Rigaudy P, Garbay-Jaureguiberry C, Jacquemin-Sablon A, LePecq J-B, Roques BP (1987) Synthesis and binding properties to DNA and to opioid receptors of encephalin-ellipticinium conjugates. Int J Pept Protein Res 30: 347–355PubMedCrossRefGoogle Scholar
  74. Roemer D, Buescher HH, Hill RC, Pless J, Bauer W, Cardinaux F, Closse A, Hauser D, Huguenin R (1977) A synthetic enkephalin analogue with prolonged parenteral and oral analgesic activity. Nature 268: 547–549PubMedCrossRefGoogle Scholar
  75. Sagan S, Amiche M, Delfour A, Mor A, Camus A, Nicolas P (1989) Molecular determinants of receptor affinity and selectivity of the natural Δ-opioid agonist dermenkephalin. J Biol Chem 264: 17100–17106PubMedGoogle Scholar
  76. Sarantakis D (1979) Analgesic polypeptide. U S Patent 4,148,786Google Scholar
  77. Sasaki Y, Matsui M, Fujita H, Hosono M, Taguchi M, Suzuki K, Sakurada S, Sato T, Sakurada T, Kisara K (1985) The analgesic activity of D-Arg2-dermorphin and its N-terminal tetrapeptide analogs after subcutaneous administration in mice. Neuropeptides 5: 391–394PubMedCrossRefGoogle Scholar
  78. Schiller PW (1984) Conformational analysis of enkephalin and conformation-activity relationships. In: Udenfriend S, Meienhofer J (eds) The peptides: analysis, synthesis, biology, vol 6. Academic, Orlando, p 219Google Scholar
  79. Schiller PW (1991) Development of receptor specific opioid peptide analogs. In: Ellis GP, West GB (eds) Progress in medicinal chemistry. Elsevier, Amsterdam, p 301Google Scholar
  80. Schiller PW, DiMaio J (1982) Opiate receptor subclasses differ in their conformational requirements. Nature 297: 74–76PubMedCrossRefGoogle Scholar
  81. Schiller PW, Wilkes BC (1988) Conformational analysis of cyclic opioid peptide analogs. In: Rapaka RS, Dhawan BN (eds) Recent progress in the chemistry and biology of opioid peptides. Natl Inst Drug Abuse Res Monogr Ser 87:60Google Scholar
  82. Schiller PW, Eggimann B, DiMaio J, Lemieux C, Nguyen TM-D (1981) Cyclic enkephalin analogs containing a cystine bridge. Biochem Biophys Res Commun 101: 337–343PubMedCrossRefGoogle Scholar
  83. Schiller PW, Nguyen TM–D, DiMaio J, Lemieux C (1983) Comparison of μ-, δ- and ĸ-receptor binding sites through pharmacologic evaluation of p-nitrophenyl- alanine analogs of opioid peptides. Life Sci 33: 319–322PubMedCrossRefGoogle Scholar
  84. Schiller PW, Nguyen TM-D, Maziak LA, Lemieux C (1985a) A novel cyclic opioid peptide analog showing high preference for receptors. Biochem Biophys Res Commun 127: 558–564PubMedCrossRefGoogle Scholar
  85. Schiller PW, DiMaio J, Nguyen TM-D (1985b) Activity profiles of conformational restricted opioid peptide analogs. In: Ovchinnikov YA (ed) Proceedings of the 16th FEBS meeting. VNU Science, Utrecht, p 457Google Scholar
  86. Schiller PW, Nguyen TM-D, Maziak LA, Wilkes BC, Lemieux C (1987) Structure- activity relationships of cyclic opioid peptide analogues containing a phenylalanine residue in the 3-position. J Med Chem 30: 2094–2099PubMedCrossRefGoogle Scholar
  87. Schiller PW, Nguyen TM-D, Lemieux C (1988) Synthesis and opioid activity profiles of cyclic dynorphin analogs. Tetrahedron 44: 733–743CrossRefGoogle Scholar
  88. Schiller PW, Nguyen TM-D, Chung NN, Lemieux C (1989a) Dermorphin analogues carrying an increased positive net charge in their “message” domain display extremely high μ opioid recptor selectivity. J Med Chem 32: 698–703PubMedCrossRefGoogle Scholar
  89. Schiller PW, Nguyen TM-D, Chung NN, Lemieux C (1989a) Dermorphin analogues carrying an increased positive net charge in their “message” domain display extremely high μ opioid recptor selectivity. J Med Chem 32:698–703Google Scholar
  90. Schiller PW, Nguyen TM–D, Chung NN, Dionne G, Martel R (1990a) Peripheral antinociceptive effect of an extremely μ-selective polar dermorphin analog (DALDA) In: Quirion R, Jhamandas K, Gianoulakis C (eds) The international narcotics research conference (INRC) 1989. Liss, New York, p 53Google Scholar
  91. Schiller PW, Nguyen TM–D, Weltrowska G, Lemieux C, Chung NN (1990b) Development of [D-Ala2]deltorphin I analogs with extraordinary delta receptor selectivity. In: van Ree J M, Mulder AH, Wiegant VM, van Wimersma Greidanus TB (eds) New leads in opioid research. Excerpta Medica, Amsterdam, p 288Google Scholar
  92. Schiller PW, Weltrowska G, Nguyen TM-D, Lemieux C, Chung NN, Wilkes BC (1991) The use of multiple conformational restriction in the development of opioid peptidomimetics. In: Giralt E, Andreu D (eds) Peptides 1990. Proceedings of the 21st European peptide symposium. ESCOM, Leiden, p 621Google Scholar
  93. Schulz R, Fasse E, Wüster M, Herz A (1979) Selective receptors for β-endorphin on the rat vas deferens. Life Sci 24: 843–850PubMedCrossRefGoogle Scholar
  94. Schwyzer R (1986) Molecular mechanism of opioid receptor selection. Biochemistry 25: 6335–6342PubMedCrossRefGoogle Scholar
  95. Shaw JS, Miller L, Turnbull MJ, Gormley JJ, Morley JS (1982) Selective antagonists at the opiate delta receptor. Life Sci 31: 1259–1262PubMedCrossRefGoogle Scholar
  96. Shearman GT, Schultz R, Schiller PW, Herz A (1985) Generalization tests with intraventricularly applied Pro-enkephalin B-derived peptides in rats trained to discriminate the opioid kappa receptor agonist ethylketocyclazocine. Psychopharmacology 85: 440–443PubMedCrossRefGoogle Scholar
  97. Sherman DB, Spatola AF, Wire WS, Burks TF, Nguyen TM-D, Schiller PW (1989) Biological activities of cyclic enkephalin pseudopeptides containing thioamides as amide bond replacements. Biochem Biophys Res Commun 162: 1126–1132PubMedCrossRefGoogle Scholar
  98. Shimohigashi Y, Costa T, Chen H-C, Rodbard D (1982) Dimeric tetrapeptide enkephalins display extraordinary selectivity for the δ opiate receptor. Nature 297: 333–335PubMedCrossRefGoogle Scholar
  99. Shimohigashi Y, Ogasawara T, Koshizaka T, Waki M, Kato T, Izumiya N, Kurono M, Yagi K (1987a) Interaction of dimers of inactive enkephalin fragments with opiate receptors. Biochem Biophys Res Commun 146: 1109–1115PubMedCrossRefGoogle Scholar
  100. Shimohigashi Y, Costa T, Pfeiffer A, Herz A, Kimura H, Stammer CH (1987b) ΔEPhe4-enkephalin analogs. FEBS Lett 222:71–74Google Scholar
  101. Shuman RT, Hynes MD, Woods JH, Gesellchen P (1990) A highly selective in vitro μ-opioid agonist with atypical in vivo pharmacology. In: Rivier JE, Marshall GR (eds) Peptides: chemistry, structure, biology. Proceedings of the 11th American peptide symposium. ESCOM, Leiden, p 326Google Scholar
  102. Smith TW, Buchan P, Parsons DN, Wilkinson S (1982) Peripheral antinociceptive effects of N-methyl morphine. Life Sci 31: 1205–1208PubMedCrossRefGoogle Scholar
  103. Stein C, Millan MJ, Yassouridis A, Herz A (1988) Antinociceptive effects of μ- and ĸ-agonists in inflammation are enhanced by a peripheral opioid receptor-specific mechanism. Eur J Pharmacol 155: 255–264PubMedCrossRefGoogle Scholar
  104. Szücs M, Belcheva M, Simon J, Benyhe S, Toth G, Hepp J, Wollemann M, Medzihradszky K (1987) Covalent labeling of opioid receptors with 3H-D-Ala2- Leu5-enkephalin chloromethyl ketone. I. Binding characteristics in rat brain membranes. Life Sci 41: 177–184Google Scholar
  105. Thornber CW, Shaw JS, Miller L, Hayward CF, Morley JS, Timms D, Wilkinson A (1986a) New δ-receptor antagonists. In: Holaday JW, Law P-Y, Herz A (eds) Progress in opioid research. Natl Inst Drug Abuse Res Monogr Ser 75:177Google Scholar
  106. Thornber CW, Shaw JS, Miller L, Hayward CF (1986b) Dimeric opioid antagonists. Natl Inst Drug Abuse Res Monogr Ser 75: 181Google Scholar
  107. Thót G, Kramer TH, Knapp R Lui G, Davis P, Burks TF, Yamamura HI, Hruby VJ (1990) [D-Pen2, D-Pen] enkephalin analogues with increased affinity and selectivity for δ opioid receptors. J Med Chem 33: 249–253Google Scholar
  108. Venn RF, Barnard EA (1981) A potent peptide affinity reagent for the opiate receptor. J Biol Chem 256: 1529–1532PubMedGoogle Scholar
  109. Von Graffenried B, del Pozo E, Roubicek J, Krebs E, Poldinger W, Burmeister P, Kerp L (1978) Effects of the synthetic enkephalin analogue FK33–824 in man. Nature 272: 729–730CrossRefGoogle Scholar
  110. Walker JM, Bowen WD, Atkins SD, Hemstreet MK, Coy DH (1987) μ-Opiate binding and morphine antagonism by octapeptide analogs of somatostatin. Peptides 8:869–875Google Scholar
  111. Wilkes BC, Schiller PW (1990) Conformation-activity relationships of cyclic dermorphin analogues. Biopolymers 29: 89–95PubMedCrossRefGoogle Scholar
  112. Yamashiro D, Li CH (1984) β-Endorphin: structure and activity. In: Udenfriend S, Meienhofer J (eds) The peptides: analysis, synthesis, biology, vol 6. Academic, Orlando, p 191Google Scholar
  113. Yang C-C, Taylor JW (1990) The design, synthesis and biological studies of synthetic peptide models of dynorphin A (1–17). In: Rivier JE, Marshall GR (eds) Peptides: chemistry, structure, biology. Proceedings of the 11th American peptide symposium. ESCOM, Leiden, p 346Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • P. W. Schiller

There are no affiliations available

Personalised recommendations