Skip to main content

Atypical Opioid Peptides

  • Chapter
Opioids

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 104 / 1))

Abstract

The term “atypical opioid peptides” as used in this article requires definition. Opioid activity may be displayed by compounds with alkaloid or with peptide structure. Opioids with peptide structure may be of natural origin or they may be synthetic derivatives of the natural compounds. The natural opioid peptides may be subdivided again in “typical” and “atypical” opioid peptides; their synthetic derivatives thus may be subdivided in “typical” and “atypical” opioid peptide analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amiche M, Sagan S, Mor A, Delfour A, Nicolas P (1989) Dermenkephalin (Tyr-D- Met-Phe-His-Leu-Met-Asp-NH2): a potent and fully specific agonist for the δ opioid receptor. Mol Pharmacol 35: 774–779

    PubMed  CAS  Google Scholar 

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Séquence and organization of the human mitochondrial genome. Nature 290: 457–465

    CAS  Google Scholar 

  • Baralle FE, Shoulders CC, Proudfoot NJ (1980) The primary structure of the human ε-globin gene. Cell 21: 621–626

    Article  PubMed  CAS  Google Scholar 

  • Brantl V (1984) Novel opioid peptides derived from human P-casein: Human P- casomorphins. Eur J Pharmacol 106: 213–214

    Article  PubMed  CAS  Google Scholar 

  • Brantl V, Teschemacher H, Bläsig J, Henschen A, Lottspeich F (1981) Opioid activities of β-casomorphins. Life Sci 28: 1903–1909

    Article  PubMed  CAS  Google Scholar 

  • Brantl V, Pfeiffer A, Herz A, Henschen A, Lottspeich F (1982) Antinociceptive potencies of β-casomorphin analogs as compared to their affinities towards μ and δ opiate receptor sites in brain and periphery. Peptides 3: 793–797

    Article  PubMed  CAS  Google Scholar 

  • Brantl V, Gramsch C, Lottspeich F, Henschen A, Jaeger KH, Herz A (1985) Novel opioid peptides derived from mitochondrial cytochrome b: cytochrophins. Eur J Pharmacol 111: 293–294

    Article  PubMed  CAS  Google Scholar 

  • Brantl V, Gramsch C, Lottspeich F, Mertz R, Jaeger KH, Herz A (1986) Novel opioid peptides derived from hemoglobin: hemorphins. Eur J Pharmacol 125: 309–310

    Article  PubMed  CAS  Google Scholar 

  • Braunitzer G, Chen R, Schrank B, Stangl A (1973) Die Sequenzanalyse des β- Lactoglobulins. Hoppe-Seylers Z Physiol Chem 354: 867–878

    Article  PubMed  CAS  Google Scholar 

  • Brew K, Castellino FJ, Vanaman TC, Hill RL (1970) The compléte amino acid séquence of bovine α-lactalbumin. J Biol Chem 245: 4570–4582

    PubMed  CAS  Google Scholar 

  • Broccardo M, Erspamer V, Falconieri Erspamer G, Improta G, Linari G, Melchiorri P, Montecucchi PC (1981) Pharmacological data on dermorphins, a new class of potent opioid peptides from amphibian skin. Br J Pharmacol 73: 625–631

    PubMed  CAS  Google Scholar 

  • Bueno L, Fioramonti J, Menezo Y (1985) Central opioid–like influence of a tetrapeptide from hamster embryo (kentsin) on gastrointestinal motility in dogs. Eur J Pharmacol 114: 67–70

    Article  PubMed  CAS  Google Scholar 

  • Chang KJ, Killian A, Hazum E, Cuatrecasas P, Chang JK (1981) Morphiceptin (NH2-Tyr-Pro-Phe-Pro-CONH2): a potent and specific agonist for morphine (μ) receptors. Science 212: 75–77

    Article  PubMed  CAS  Google Scholar 

  • Chang KJ, Wei ET, Killian A, Chang JK (1983) Potent morphiceptin analogs: structure, activity relationships and morphine-like activities. J Pharmacol Exp Ther 227: 403–408

    PubMed  CAS  Google Scholar 

  • Chang KJ, Su YF, Brent DA, Chang JK (1985) Isolation of a specific μ-opiate receptor peptide, morphiceptin, from an enzymatic digest of milk protein. J Biol Chem 260: 9706–9712

    PubMed  CAS  Google Scholar 

  • Chiba H, Yoshikawa M (1986) Biologically functional peptides from food proteins: new opioid peptides from milk proteins. In: Feeney RE, Whitaker JR (eds) Protein tailoring for food and medical uses. Dekker, New York, pp 123–153

    Google Scholar 

  • Chiba H, Tani F, Yoshikawa M (1989) Opioid antagonist peptides derived from K–casein. J Dairy Res 56: 363–366

    Article  PubMed  CAS  Google Scholar 

  • Corbett AD, Gillan MGC, Kosterlitz HW, McKnight AT, Paterson SJ, Robson LE (1984) Selectivities of opioid peptide analogues as agonists and antagonists at the δ–receptor. Br J Pharmacol 83: 271–279

    PubMed  CAS  Google Scholar 

  • Daniel H, Vohwinkel M, Rehner G (1990a) Effect of casein and β–casomorphins on gastrointestinal motility in rats. J Nutr 120: 252–257

    PubMed  CAS  Google Scholar 

  • Daniel H, Wessendorf A, Vohwinkel M, Brantl V (1990b) Effect of D-Ala2,4, Tyr5-β- casomorphin-5-amide on gastrointestinal functions. In: Nyberg F, Brantl V (eds) β-casomorphins and related peptides. Fyris–Tryck, Uppsala, pp 95–104

    Google Scholar 

  • Davis TP, Gillespie TJ, Porreca F (1989) Peptide fragments derived from the P-chain of hemoglobin (hemorphins) are centrally active in vivo. Peptides 10: 747–751

    Article  PubMed  CAS  Google Scholar 

  • De Ponti F, Marcoli M, Lecchini S, Manzo L, Frigo GM, Crema A (1988) Effect of β-casomorphins on intestinal propulsion in the guinea-pig colon. J Pharm Pharmacol 41: 302–305

    Article  Google Scholar 

  • Ermisch A, Riihle HJ, Neubert K, Hartrodt B, Landgraf R (1983) On the blood-brain barrier to peptides: [3H]β-casomorphin-5 uptake by eighteen brain regions in vivo. J Neurochem 41: 1229–1233

    Article  PubMed  CAS  Google Scholar 

  • Erspamer V, Melchiorri P, Broccardo M, Falconieri Erspamer G, Falaschi P, Improta G, Negri L, Renda T (1981) The brain-gut-skin triangle: new peptides. Peptides 2: 7–16

    Article  PubMed  CAS  Google Scholar 

  • Erspamer V, Melchiorri P, Falconieri-Erspamer G, Negri L, Corsi R, Severini C, Barra D, Simmaco M, Kreil G (1989) Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for δ opioid binding sites. Proc Natl Acad Sci USA 86: 5188–5192

    Article  PubMed  CAS  Google Scholar 

  • Faris PL, Komisaruk BR, Watkins LR, Mayer DJ (1983) Evidence for the neuropeptide cholecystokinin as an antagonist of opiate analgesia. Science 219: 310–312

    Google Scholar 

  • Findlay JBC, Brew K (1972) The compléte amino-acid séquence of human a- lactalbumin. Eur J Biochem 27: 65–86

    Article  PubMed  CAS  Google Scholar 

  • Galina ZH, Kastiri A J (1986) Existence of antiopiate systems as illustrated by MIF- 1/Tyr-MIF–l. Life Sci 39: 2153–2159

    Article  PubMed  CAS  Google Scholar 

  • Graf L, Horvath K, Walcz E, Berzetei I, Burnier J (1987) Effect of two synthetic α-gliadin peptides on lymphocytes in celiac disease: identification of a novel class of opioid receptors. Neuropeptides 9: 113–122

    Article  PubMed  CAS  Google Scholar 

  • Greenberg R, Groves ML, Dower HJ (1984) Human β-casein. Amino acid séquence and identification of phosphorylation sites. J Biol Chem 259: 5132–5138

    Google Scholar 

  • Hartrodt B, Neubert K, Fischer G, Demuth U, Yoshimoto T, Barth A (1982a) Degradation of β-casomorphin-5 by proline-specific endopeptidase (PSE) and post-proline cleaving enzyme ( PPCE ). Pharmazie 37: 72–73

    Google Scholar 

  • Hartrodt B, Neubert K, Fischer G, Schulz H, Barth A (1982b) Synthese undenzymatischer Abbau von β-Casomorphin-5. Pharmazie 37: 165–169

    PubMed  CAS  Google Scholar 

  • Hautefeuille M, Brantl V, Dumontier AM, Desjeux JF (1986) In vitro effects of β-casomorphins on ion transport in rabbit ileum. Am J Physiol 250:G92–G97

    Google Scholar 

  • Hedner J, Hedner T (1987) β-Casomorphins induce apnea and irregular breathing in adult rats and new-born rabbits. Life Sci 41:2303–2312

    Article  Google Scholar 

  • Henschen A, Lottspeich F, Brantl V, Teschemacher H (1979) Novel opioid peptides derived from casein (β–casomorphins). II. Structure of active components from bovine casein peptone. Hoppe-Seylers Z Physiol Chem 360: 1217–1224

    Google Scholar 

  • Kastin AJ, Olson RD, Ehrensing RH, Berzas MC, Schally A, Coy DH (1979) MIF- l’s differential actions as an opiate antagonist. Pharmacol Biochem Behav 11: 721–723

    Article  PubMed  CAS  Google Scholar 

  • Kisara K, Sakurada S, Sakurada T, Sasaki Y, Sato T, Suzuki K, Watanabe H (1986) Dermorphin analogues containing D-kyotorphin: structure-antinociceptive relationships in mice. Br J Pharmacol 87: 183–189

    PubMed  CAS  Google Scholar 

  • Koch G, Brantl V (1990) Binding of β-casomorphins to opioid receptors. In: Nyberg F, Brantl V (eds) P-Casomorphins and related peptides, Fyris-Tryck, Uppsala, pp 43–52

    Google Scholar 

  • Koch G, Wiedemann K, Teschemacher H (1985) Opioid activities of human β-casomorphins. Naunyn-Schmiedebergs Arch Pharmacol 331: 351–354

    Article  PubMed  CAS  Google Scholar 

  • Koch G, Wiedemann K, Drebes E, Zimmermann W, Link G, Teschemacher H (1988) Human β–casomorphin-8 immunoreactive material in the plasma of women during pregnancy and after delivery. Regul Peptides 20: 107–117

    Article  CAS  Google Scholar 

  • Koldovsky O, Thornburg W (1987) Hormones in milk. A review. J Pediatr Gastroenterol Nutr 6: 172–196

    Google Scholar 

  • Kosaka T, Sakurada S, Sakurada T, Sato T, Kisara K, Hosono M, Sasaki Y, Suzuki K (1985) Antinociceptive properties of a new tetrapeptide, Asn-Ala-Gly-Ala, in mice. Arch Int Pharmacodyn 277: 280–288

    Google Scholar 

  • Kreil G, Barra D, Simmaco M, Erspamer V, Falconieri Erspamer G, Negri L, Severini C, Corsi R, Melchiorri P (1989) Deltorphin, a novel amphibian skin peptide with high selectivity and affinity for 5 opioid receptors. Eur J Pharmacol 162: 123–128

    Article  PubMed  CAS  Google Scholar 

  • Lawn RM, Efstratiadis A, O’Connell C, Maniatis T (1980) The nucleotide séquence of the human β-globin gene. Cell 21: 647–651

    Article  PubMed  CAS  Google Scholar 

  • Lazarus LH, Guglietta A, Wilson WE, Irons BJ, de Castiglione R (1989a) Dimeric dermorphin analogues asμ–receptor probes on rat brain membranes. J Biol Chem 264: 354–362

    CAS  Google Scholar 

  • Lazarus LH, Wilson WE, de Castiglione R, Guglietta A (1989b) Dermorphin gene séquence peptide with high affinity and selectivity for δ-opioid receptors. J Biol Chem 264: 3047–3050

    CAS  Google Scholar 

  • Liebmann C, Szücs M, Neubert K, Hartrodt B, Arold H, Barth A (1986) Opiate receptor binding affinities of some D-amino acids substituted β-casomorphin analogs. Peptides 7: 195–199

    Article  PubMed  CAS  Google Scholar 

  • Liebmann C, Schrader U, Brantl V (1989) Opioid receptor affinities of the blood- derived tetrapeptides hemorphin and cytochrophin. Eur J Pharmacol 166: 523–526

    Article  PubMed  CAS  Google Scholar 

  • Lindström LH, Nyberg F, Terenius L, Bauer K, Besev G, Gunne LM, Lyrenas S, Willdeck-Lund G, Lindberg B (1984) CSF and plasma β-casomorphin-like opioid peptides in post-partum psychosis. Am J Psychiatry 141: 1059–1066

    PubMed  Google Scholar 

  • Lönnerdal B, Bergstrom S, Andersson Y, Hjalmarsson K, Sundqvist AK, Hernell O (1990) Cloning and sequencing of a cDNA encoding human milk β–casein. FEBS Lett 269: 153–156

    Article  PubMed  Google Scholar 

  • Loukas S, Varoucha D, Zioudrou C, Streaty RA, Klee WA (1983) Opioid activities and structures of a-casein-derived exorphins. Biochemistry 22: 4567–4573

    Article  PubMed  CAS  Google Scholar 

  • Loukas S, Panetsos F, Donga E, Zioudrou C (1990) Selective δ–antagonist peptides, analogs of α-casein exorphin, as probes for the opioid receptor. In: Nyberg F, Brantl V (eds) β-Casomorphins and related peptides. Fyris–Tryck, Uppsala, pp 65–75

    Google Scholar 

  • Mansfeld R, Kautni J, Grunert E, Brantl V, Jochle W (1990) Clinical application of bovine p-casomorphins for treatment of calf diarrhea. In: Nyberg F, Brantl V (eds) P-Casomorphins and related peptides. Fyris-Tryck, Uppsala, pp 105–108

    Google Scholar 

  • Matthies H, Stark H, Hartrodt B, Rüthrich HL, Spieler HT, Barth A, Neubert K (1984) Derivatives of β-casomorphins with high analgesic potency. Peptides 5: 463–470

    Article  PubMed  CAS  Google Scholar 

  • Meisel H (1986) Chemical characterization and opioid activity of an exorphin isolated from in vivo digests of casein. FEBS Lett 196: 223–227

    Article  PubMed  CAS  Google Scholar 

  • Meisel H, Schlimme E (1990) Milk proteins: precursors of bioactive peptides. Trends Food Sci Technol 1: 41–43

    Article  CAS  Google Scholar 

  • Mercier JC, Grosclaude F, Ribadeau-Dumas B (1971) Structure primaire de la caseine αs1-bovine: séquence compléte. Eur J Biochèm 23: 41–51

    Article  PubMed  CAS  Google Scholar 

  • Mercier JC, Brignon G, Ribadeau-Dumas B (1973) Structure primaire de la casein kB bovine: séquence compléte. Eur J Biochem 35: 222–235

    Article  PubMed  CAS  Google Scholar 

  • Metz-Boutigue MH, Jollés J, Mazurier J, Schoentgen F, Legrand D, Spik G, Montreuil J, Jolles P (1984) Human lactotransferrin: amino acid séquence and structural comparisons with other transferrins. Eur J Biochem 145: 659–676

    Article  PubMed  CAS  Google Scholar 

  • Montecucchi PC, de Castiglione R, Piani S, Gozzini L, Erspamer V (1981a) Amino acid composition and séquence of dermorphin, a novel opiate-like peptide from the skin of Phyllomedusa sauvagei. Int J Pept Protein Res 17: 275–283

    CAS  Google Scholar 

  • Montecucchi PC, de Castiglione R, Erspamer V (1981b) Identification of dermorphin and Hyp6-dermorphin in skin extracts of the Brazilian frog Phyllomedusa rhodei. Int J Pept Protein Res 17: 316–321

    CAS  Google Scholar 

  • Mor A, Delfour A, Sagan S, Amiche M, Pradelles P, Rossier J, Nicolas P (1989) Isolation of dermenkephalin from amphibian skin, a high-affinity δ-selective opioid heptapeptide containing a D–amino acid residue. FEBS Lett 255: 269–274

    Article  PubMed  CAS  Google Scholar 

  • Mor A, Pradelles P, Delfour A, Montagne JJ, Quintero FL, Conrath M, Nicolas P (1990) Evidence for pro-dermorphin processing products in rat tissu s. Biochem Biophys Res Commun 170: 30–38

    Article  PubMed  CAS  Google Scholar 

  • Morley JE (1982) Food peptides: a new class of hormones? J Am Med Assoc 247: 2379–2380

    Article  CAS  Google Scholar 

  • Neubert K, Hartrodt B, Born I, Barth A, Ruethrich HL, Grecksch G, Schrader U, Liebmann C (1990) Structural modifications of β-casomorphin-5 and related peptides. In: Nyberg F, Brantl V (eds) P-Casomorphins and related peptides. Fyris-Tryck, Uppsala, pp 15–20

    Google Scholar 

  • Nyberg F, Lieberman H, Lindström LH, Lyrenäs S, Koch G, Terenius L (1989) Immunoreactive β-casomorphin-8 in cerebrospinal fluid from pregnant and lactating women: a positive correlation with plasma levels. J Clin Endocrinol Metab 68: 283–289

    Article  PubMed  CAS  Google Scholar 

  • Paroli E (1988) Opioid peptides from food (the exorphins). World Rev Nutr Diet 55: 58–97

    PubMed  CAS  Google Scholar 

  • Payan DG, Horváth K, Gráf L (1987) Specific high-affinity binding sites for a synthetic gliadin heptapeptide on human peripheral blood lymphocytes. Life Sci 40: 1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Petrilli P, Addeo F, Chianese L (1983) Primary structure of water buffalo β-casein: tryptic and CNBr peptides. Ital J Biochem 32: 336–344

    PubMed  CAS  Google Scholar 

  • Petrilli P, Picone D, Caporale C, Addeo F, Auricchio S, Marino G (1984) Does casomorphin have a functional role? FEBS Lett 169: 53–56

    Article  PubMed  CAS  Google Scholar 

  • Provot C, Persuy MA, Mercier JC (1989) Compléte nucleotide séquence of ovine β-casein cDNA: inter-species comparison. Biochimie 71: 827–832

    Article  PubMed  CAS  Google Scholar 

  • Raffa RB, Jacoby HI (1989) A-18-famide and F-8-famide, endogenous mammalian equivalents of the molluscan neuropeptide FMRF amide (Phe-Met-Arg-Phe-NH2), inhibit colonic bead expulsion time in mice. Peptides 10: 873–875

    Article  PubMed  CAS  Google Scholar 

  • Ramabadran K, Bansinath M (1988) Opioid peptides from milk as a possible cause of sudden infant death syndrome. Med Hypotheses 27: 181–187

    Article  PubMed  CAS  Google Scholar 

  • Ramabadran K, Bansinath M (1989) Pharmacology of β-casomorphins, opioid peptides derived from milk protein. Asia Pac J Pharmacol 4: 45–58

    CAS  Google Scholar 

  • Ramabadran K, Moore BE (1988) Sudden infant death syndrome and opioid peptides from milk. Am J Dis Child 142: 12–13

    PubMed  CAS  Google Scholar 

  • Read LC, Lord APD, Brantl V, Koch G (1990) Absorption of β–casomorphins from autoperfused lamb and piglet small intestine. Am J Physiol 259: G443–452

    PubMed  CAS  Google Scholar 

  • Ribadeau-Dumas B, Brignon G, Grosclaude F, Mercier JC (1972) Structure primaire de la caseine P bovine. Séquence compléte. Eur J Biochem 25: 505–514

    Google Scholar 

  • Richardson BC, Mercier JC (1979) The primary structure of the ovine β-caseins. Eur J Biochem 99: 285–297

    Article  PubMed  CAS  Google Scholar 

  • Richter K, Egger R, Kreil G (1987) D-Alanine in the frog skin peptide dermorphin is derived from L–alanine in the precursor. Science 238: 200–202

    Article  PubMed  CAS  Google Scholar 

  • Richter K, Egger R, Negri L, Corsi R, Severini C, Kreil G (1990) cDNAs encoding [D-Ala2]deltorphin precursors from skin of Phyllomedusa bicolor also contain genetic information for three dermorphin-related opioid peptides. Proc Natl Acad Sci USA 87:4836–4839

    Google Scholar 

  • Sagan S, Amiche M, Delfour A, Mor A, Camus A, Nicolas P (1989) Molecular determinants of receptor affinity and selectivity of the natural δ-opioid agonist, dermenkephalin. J Biol Chem 264: 17100–17106

    PubMed  CAS  Google Scholar 

  • Schams D, Karg H (1986) Hormones in milk. Ann N Y Acad Sci 464: 75–86

    Article  PubMed  CAS  Google Scholar 

  • Scheffler H, Koch G, Brantl V, Teschemacher H (1990) Release of opioid peptide immunoreactive materials from pituitary tissue upon stimulation with a hemoglobin fragment, hemorphin-4, in vitro. In: van Ree JM, Mulder AH, Wiegant VM, van Wimersma Greidanus TB (eds) New leads in opioid research. Excerpta Medica, Amsterdam, pp 379–380

    Google Scholar 

  • Schiller PW, Nguyen TMD, Chung NN, Lemieux C (1989) Dermorphin analogues carrying an increased positive net charge in their “message” domain display extremely hi h opioid receptor selectivity. J Med Chem 32: 698–703

    Article  PubMed  CAS  Google Scholar 

  • Schiller PW, Nguyen TMD, Weltrowska G, Lemieux C, Chung NN (1990) Development of [D–Ala2]deltorphin I analogs with extraordinary delta receptor selectivity. In: van Ree JM, Mulder AH, Wiegant VM, van W mersma Greidanus TB (eds) New leads in opioid research. Excerpta Medica, Amsterdam, pp 288–290

    Google Scholar 

  • Singh M, Rosen CL, Chang KJ, Haddad GG (1989) Plasma β-casomorphin-7 immunoreactive peptide increases af er milk intake in newborn but not in adult dogs. Pediatr Res 26: 34–38

    Article  PubMed  CAS  Google Scholar 

  • Slightom JL, Blechl AE, Smithies O (1980) Human fetal Gy and Vglobin genes: compléte nucleotide séquences suggest that DNA can be exchanged between these duplicated genes. Cell 21: 627–638

    Article  PubMed  CAS  Google Scholar 

  • Spritz RA, DeRiel JK, Forget BG, Weissman SM (1980) Compléte nucleotide séquence of the human 5-globin gene. Cell 21: 639–646

    Article  PubMed  CAS  Google Scholar 

  • Svedberg J, de Haas J, Leimenstoll G, Paul F, Teschemacher H (1985) Demonstration of β-casomorphin immunoreactive materials in in vitro digests of bovine milk and in small intestine contents after bovine milk ingestion in adult humans. Peptides 6: 825–830

    CAS  Google Scholar 

  • Tang J, Yang HYT, Costa E (1984) Inhibition of spontaneous and opiate-modified nociception by an endogeneous neuropeptide with Phe-Met-Arg-Phe-NH2-like immunoreactivity. Proc Natl Acad Sci USA 81: 5002–5005

    Article  PubMed  CAS  Google Scholar 

  • Takagi H, Shiomi H, Ueda H, Amano H (1979) A novel analgesic dipeptide from bovine brain is a possible Met-enkephalin releaser. Nature 282: 410–412

    Article  PubMed  CAS  Google Scholar 

  • Teschemacher H (1987a) Casein-derived opioid peptides: physiological significance? Adv Biosci 65: 41–48

    Google Scholar 

  • Teschemacher H (1987b) β-Casomorphins: do they have physiological significance? In: Goldman AS, Atkinson SA, Hanson LA (eds) Human lactation 3. Plenum, New York, pp 213–225

    Google Scholar 

  • Teschemacher H, Koch G (1990) β-Casomorphins: possible physiological significance. In: Nyberg F, Brantl V (eds) β-Casomorphins and related peptides. Fyris-Tryck, Uppsala, pp 143–149

    Google Scholar 

  • Teschemacher H, Koch G (1991) Opioids in the milk. Endocrine Regul 25: 147–150

    CAS  Google Scholar 

  • Teschemacher H, Umbach M, Hamel U, Praetorius K, Ahnert-Hilger G, Brantl V, Lottspeich F, Henschen A (1986) No evidence for the presence of P-casomorphins in human plasma after ingestion of cows’ milk or milk products. J Dairy Res 53: 135–138

    Article  PubMed  CAS  Google Scholar 

  • Teschemacher H, Brantl V, Henschen A, Lottspeich F (1990) P-Casomorphins -7 β-casein fragments with opioid activity: detection and structure. In: Nyberg F, Brantl V (eds) β-Casomorphins and related peptides. Fyris-Tryck, Uppsala, pp 9–14

    Google Scholar 

  • Tomé D, Dumontier AM, Hautefeuille M, Desjeux JF (1987) Opiate activity and transepithelial passage of intact β-casomorphins in rabbit ileum. Am J Physiol 253: G737–744

    PubMed  Google Scholar 

  • Ueda H, Yoshihara Y, Fukushima N, Shiomi H, Nakamura A, Takagi H (1987a) Kyotorphin (tyrosine-arginine) synthetase in rat brain synaptosomes. J Biol Chem 262: 8165–8173

    PubMed  Google Scholar 

  • Ueda H, Fukushima N, Yoshihara Y, Takagi H (1987b) A Met-enkephalin releaser (kyotorphin)-induced release of plasma membrane-bound Ca2+ from rat brain synaptosomes. Brain Res 419: 197–200

    Article  PubMed  CAS  Google Scholar 

  • Ueda H, Yoshihara Y, Misawa H, Fukushima N, Katada T, Ui M, Takagi H, Satoh M (1989) The kyotorphin (tyrosine-arginine) receptor and a selective reconstitution with purified Gi, measured with GTPase and phospholipase C assays. J Biol Chem 264: 3732–3741

    PubMed  CAS  Google Scholar 

  • Umbach M, Teschemacher H, Praetorius K, Hirschhauser R, Bostedt H (1985) Demonstration of a β–casomorphin immunoreactive material in the plasma of newborn calves after milk intake. Regul Pept 12: 223–230

    Article  PubMed  CAS  Google Scholar 

  • Watson, S, Abbott A (1989) Opioid receptors. Trends Pharmacol Sci 10, Receptor Nomenclature Supplement, p 21

    Google Scholar 

  • Yang HYT, Fratta W, Majane EA, Costa E (1985) Isolation, sequencing, synthesis, and pharmacological characterization of two brain neuropeptides that modulate the action of morphine. Proc Natl Acad Sci USA 82: 7757–7761

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara Y, Ueda H, Imajoh S, Takagi H, Satoh M (1988) Calcium-activated neutral protease ( CANP), a putative processing enzyme of the neuropeptide, kyotorphin, in the brain. Biochem Biophys Res Commun 155: 546–553

    Google Scholar 

  • Yoshikawa M, Yoshimura T, Chiba H (1984) Opioid peptides from human β-casein. Agric Biol Chem 48: 3185–3187

    Article  CAS  Google Scholar 

  • Yoshikawa M, Tani F, Yoshimura T, Chiba H (1986a) Opioid peptides from milk proteins. Agric Biol Chem 50: 2419–2421

    Article  CAS  Google Scholar 

  • Yoshikawa M, Tani F, Ashikaga T, Yoshimura T, Chiba H (1986b) Purification and characterization of an opioid antagonist from a peptic digest of bovine K-casein. Agric Biol Chem 50: 2951–2954

    Article  CAS  Google Scholar 

  • Yoshikawa M, Tani F, Chiba H (1988) Structure-activity relationship of opioid antagonist peptides derived from milk proteins. In: Shiba S, Sakakibara S (eds) Peptide chemistry. Protein Research Foundation, Osaka, pp 473–476

    Google Scholar 

  • Zadina JE, Kastin AJ (1986) Interactions of Tyr-MIF-1 at opiate receptor sites. Pharmacol Biochem Behav 25: 1303–1305

    Article  PubMed  CAS  Google Scholar 

  • Zadina JE, Kastin AJ, Ge LJ, Brantl V (1990) Casomorphin-related peptides bind to non-opiate (Tyr-MIF-1) sites as well as opiate receptors in brain. In: Nyberg F, Brantl V (eds) β-Casomorphins and related peptides. Fyris-Tryck, Uppsala, pp 61–63

    Google Scholar 

  • Zioudrou C, Streaty RA, Klee WA (1979) Opioid peptides derived from food proteins. J Biol Chem 254: 2446–2449

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Teschemacher, H. (1993). Atypical Opioid Peptides. In: Herz, A., Akil, H., Simon, E.J. (eds) Opioids. Handbook of Experimental Pharmacology, vol 104 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77460-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77460-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77462-1

  • Online ISBN: 978-3-642-77460-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics