Skip to main content

Presence of Endogenous Opiate Alkaloids in Mammalian Tissues

  • Chapter
Opioids

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 104 / 1))

Abstract

The finding that mammalian tissues contain the opiate alkaloid morphine endogenously arose as a fallout of having developed morphine antibodies (Spector and Parker 1970). Initially these antibodies were used to monitor exogenously administered opiates and to study their disposition in body fluids (Gintzler et al. 1976a). The advantages that these antibodies served in the detection of opiate alkaloids were their sensitivity and specificity (Spector 1971). It became feasible to speculate and ask whether morphine, an opiate alkaloid synthesized in a very complex and stereospecific pathway in the poppy plant Papaver somniferum (see Fig. 1), or a closely related compound, also existed as an endogenous compound in mammalian body fluids and tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barton DHR, Kirby GW, Steglich W, Thomas GM, Battersby AR, Dobson TA, Ramuz H (1965) Investigations on the biosynthesis of morphine alkaloids. J Chem Soc: 2423–2428

    Google Scholar 

  • Battersby AR, Binks R, Francis RJ, McCaldin DJ, Ramuz H (1964) Alkaloid biosynthesis: IV. 1-Benzylisoquinolines as precursors of thebaine, codeine, and morphine. J Chem Soc: 3600–3610

    Google Scholar 

  • Battersby AR, Foulkes DM, Binks R (1965) Alkaloid biosynthesis: VIII. Use of optically active precursors for investigations on the biosynthesis of morphine alkaloids. J Chem Soc: 3323–3332

    Google Scholar 

  • Blume AJ, Shorr J, Finberg JPM, Spector S (1977) Binding of the endogenous non-peptide morphine-like compound to opiate receptors. Proc Natl Acad Sci USA 74: 4927–4931

    Article  PubMed  CAS  Google Scholar 

  • Brochmann-Hanssen E (1984) A second pathway for the terminal steps in the biosynthesis of morphine. Planta Med 4: 343–345

    Article  Google Scholar 

  • Brown CE, Roerig SC, Burger VT, Cody RB, Fujimoto JM (1985) Analgesic potencies of morphine 3- and 6-sulfates after intracerebroventricular administration in mice: relationship to structural characteristics defined by mass spectrometry and nuclear mahnetic resonance. J Pharm Sci 74: 821–824

    Article  PubMed  CAS  Google Scholar 

  • Cardinale GJ, Donnerer J, Finck AD, Kantrowitz JD, Oka K, Spector S (1987) Morphine and codeine are endogenous components of human cerebrospinal fluid. Life Sci 40: 301–306.

    Article  PubMed  CAS  Google Scholar 

  • Cox BA, Goldstein A, Li CH (1976) Opiate activity of a peptide, β-lipotropin (61–91) derived from (3-lipotropin. Proc Natl Acad Sci USA 73: 1821–1823

    Article  PubMed  CAS  Google Scholar 

  • Creveling CR, Bell ME, Sekine Y, Tadic D, Brossi A (1990) The biosynthesis of mammalian morphine: the role of enzymatic O-methylation of (R)- and (S)- enantiomers of norcoclaurine, and 3-demethylnorreticuline in the formation of (S)-reticuline. Soc Neurosci Abstr 16 1: 802

    Google Scholar 

  • Donnerer J, Oka K, Brossi A, Rice KC, Spector S (1986) Presence and formation of codeine and morphine in the rat. Proc Natl Acad Sci USA 83: 4566–4567

    Article  PubMed  CAS  Google Scholar 

  • Donnerer J, Cardinale G, Coffey J, Lisek CA, Jardine I, Spector S (1987) Chemical characterization and regulation of endogenous morphine and codeine in the rat. J Pharmacol Exp Ther 242: 583–587

    PubMed  CAS  Google Scholar 

  • Dumont R, Newmann AH, Rice KC, Brossi A, Toome V, Wegrzynski B (1986) Precursors of the mammalian synthesis of morphine: (+)-salutaridine and (-)-N-13CH3-thebaine from (-)-northebaine. FEBS Lett 206: 125–129

    Article  PubMed  CAS  Google Scholar 

  • Findlay JWA, Jones EC, Butz RF, Welch RM (1978) Plasma codeine and morphine concentrations after therapeutic oral doses of codeine-containing analgesics. Clin Pharmacol Ther 24: 60–68

    PubMed  CAS  Google Scholar 

  • Gintzler AR, Mohacsi E, Spector S (1976a) Radioimmunoassay for the simultaneous determination of morphine and codeine. Eur J Pharmacol 38: 149–156

    Article  PubMed  CAS  Google Scholar 

  • Gintzler AR, Levy A, Spector S (1976b) Antobodies as a means of isolating and characterizing biologically active substances: presence of a non-peptide, morphine-like compound in the central nervous system. Proc Natl Acad Sci USA 73: 2432–2436

    Article  Google Scholar 

  • Gintzler AR, Gershon MD, Spector S (1978) A nonpeptide morphine-like compound: immunocytochemical localization in the mouse brain. Science 199: 447–448

    Article  PubMed  CAS  Google Scholar 

  • Goldstein A, Tachibana S, Lowney LI, Hunkapiller M (1979) Dynorphin (1–13) an extraordinary potent opioid peptide. Proc Natl Acad Sci USA 76: 6666–6670

    Article  PubMed  CAS  Google Scholar 

  • Goldstein A, Barrett RW, James IF, Lowney LI, Weitz CJ, Knipmeyer LL, Rapoport H (1985) Morphine and other opiates from beef brain and adrenal. Proc Natl Acad Sci USA 82: 5203–5207

    Article  PubMed  CAS  Google Scholar 

  • Haberman F, Lavicky J, Marcum E, Spector S (1988) Elevation of endogenous levels of codeine and morphine following the administration of tumor necrosis factor and lipopolysaccharide. FASEB J 2: A1260

    Google Scholar 

  • Hazum E, Sabatka JJ, Chang KJ, Brent DA, Findlay JWA, Cuatrecasas P (1981) Morphine in cow and human milk: could dietary morphine constitute a ligand for specific morphine(μ) receptors? Science 213: 1010–1012

    Article  PubMed  CAS  Google Scholar 

  • Hughes J, Smith TW, Kosterlitz HW, Fothergrill JA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258: 577–579

    Article  PubMed  CAS  Google Scholar 

  • Killian AK, Schuster CR, House JT, Shell S, Connors VA, Warner BH (1981) A non-peptide morphine-like compound from brain. Life Sci 28: 811–817

    Article  PubMed  CAS  Google Scholar 

  • Klee WA, Nirenberg M (1974) A neuroblastoma x glioma hybrid cell with morphine receptors. Proc Natl Acad Sci USA 71: 3474–3477

    Article  PubMed  CAS  Google Scholar 

  • Kodaira H, Spector S (1988) Transformation of thebaine to oripavine, codeine, and morphine by rat liver, kidney, and brain microsomes. Proc Natl Acad Sci USA 85: 1267–1271

    Article  PubMed  CAS  Google Scholar 

  • Kodaira H, Lisek CA, Jardine I, Arimura A, Spector S (1989) Identification of the convulsant opiate thebaine in mammalian brain. Proc Natl Acad Sci USA 86: 716–719

    Article  PubMed  CAS  Google Scholar 

  • Kosterlitz HW (1985) Has morphine a physiological function in the animal kingdom? Nature 317: 671–672

    Article  PubMed  CAS  Google Scholar 

  • Kosterlitz HW (1987) Biosynthesis of morphine in the animal kingdom. Nature 330: 606

    Article  PubMed  CAS  Google Scholar 

  • Lee CS, Spector S (1991) Changes of endogenous morphine and codeine contents in the fasting rat. J Pharmacol Exp Ther 257: 647–650

    PubMed  CAS  Google Scholar 

  • Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE (1976) The effects of morphine and nalorphine drugs in the nondependent and morphine dependent chronic spinal dog. J Pharmacol Exp Ther 197: 517–532

    PubMed  CAS  Google Scholar 

  • Oka K, Kantrowitz JD, Spector S (1985) Isolation of morphine from toad skin. Proc Natl Acad Sci USA 82: 1852–1854

    Article  PubMed  CAS  Google Scholar 

  • Paul D, Standifer KM, Inturrisi CE, Pasternak GW (1989) Pharmacological characterization of morphine-6-glucuronide, a very potent morphine metabolite. J Pharmacol Exp Ther 251: 477–483

    PubMed  CAS  Google Scholar 

  • Rumeysa S, Suna D, Dilek ED, Bilge S, Eymire O (1990) Endogenous thebaine: cause of epileptic convulsions? In: Van Ree (ed) New leads in opioid research. ICS 914, pp 349–350

    Google Scholar 

  • Sandler M, Carter SB, Hunter KR, Stern GM (1973) Tetrahydroisoquinoline alkaloids: in vivo metabolites of L-dopa in man. Nature 241: 439–443

    Article  PubMed  CAS  Google Scholar 

  • Spector S (1971) Quantitative determination of morphine in serum by radioimmunoassay. J Pharmacol Exp Ther 178: 253–258

    PubMed  CAS  Google Scholar 

  • Spector S, Perker C (1970) Morphine: radioimmunoassay. Science 168: 1347–1348

    Article  PubMed  CAS  Google Scholar 

  • Stadler R, Kutchan TM, Loeffler S, Nagakura N, Cassels B, Zenk MH (1987) Revision of the early steps of reticuline biosynthesis. Tetrahedron Lett 28: 1251–1254

    Article  CAS  Google Scholar 

  • Tortella FC, Cowan A, Adler MW (1984) Studies on the Excetatory and inhibitory influence of intracerebroventricularily injection of opioids on seizure thresholds in rats. Neuropharmacology 23: 749–754

    Article  PubMed  CAS  Google Scholar 

  • Turner AJ, Baker KM, Algeri S, Frigerio A, Garattini S (1974) Tetrahydropapaveroline: formation in vivo and in vitro in rat brain. Life Sci 14: 2247–2257

    Article  PubMed  CAS  Google Scholar 

  • Weitz CJ, Lowney LI, Faull KF, Feistner G, Goldstein A (1986) Morphine and codeine from mammalian brain. Proc Natl Acad Sci USA 83: 9784–9788

    Article  PubMed  CAS  Google Scholar 

  • Weitz CJ, Faull KF, Goldstein A (1987) Synthesis of the skeleton of the morphine molecule by mammalian liver. Nature 330: 674–677

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spector, S., Donnerer, J. (1993). Presence of Endogenous Opiate Alkaloids in Mammalian Tissues. In: Herz, A., Akil, H., Simon, E.J. (eds) Opioids. Handbook of Experimental Pharmacology, vol 104 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77460-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77460-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77462-1

  • Online ISBN: 978-3-642-77460-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics